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Among separation systems, the ones comprising separators effected by different separation methods have
been steadily gaining attention lately. Our earlier work has revealed that it is exceedingly complicated
to optimally synthesize via super-structure any of these separation networks featuring simple and sharp
separators, multiple feed and product streams, and mixed products. This complication can be substan-
tially lessened by constituting a reduced super-structure for the network of interest. This super-structure
profoundly simplifies the mathematical model and decreases the computational time required to yield
the results identical to those obtained from the original super-structure.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Separation-network synthesis (SNS) is one of the most impor-
tant sub-disciplines of process synthesis: separation processes and
networks are ubiquitous throughout the chemical and allied indus-
tries; see, e.g., King (1980), Huang, Ramaswamy, Tschirne, and
Ramarao (2008), Takoungsakdakun and Pongstabodee (2007), and
Amale and Lucia (2008). The energy demands and consequently the
operating costs of separation tasks tend not only to be inordinately
high but also to be capital intensive. Naturally, it is highly desirable
that the structures of separator networks be optimized; see, e.g.,
Biegler, Grossmann, and Westerberg (1997) and Wang, Li, Hu, and
Wang (2008).

A separation network comprising separators, mixers, and
dividers performs a sequence of separation tasks to yield the
desired product streams from the given feed streams (Floudas,
1987). The multi-component streams present in the network are
distinguishable according to their locations in the separation net-
work; they can be the feed, intermediate and product streams.

Various combinations of the separators, mixers, and dividers
give rise to a multitude of separation networks, which are capable
of yielding the required product streams from a given multi-
component feed stream or streams. The aim of SNS is to identify
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the structure of the most favorable separation network, often in
terms of cost, from a multitude of alternatives. A typical example is
the crude oil separation in which a countless number of products
are manufactured (Tahmassebi, 1986).

Herein, the term, separator family, is defined as a set of separators
that are effected by the same physical or chemical property. Any
of the algorithmic methods for SNS tends to regard the available
separators as belonging to a single separator family, e.g., the one
effected by relative volatility. Nevertheless, separation networks,
each containing separators from different separator families are
becoming increasingly popular because of their immense potential
for substantial cost reduction.

Thompson and King (1972) were among the firsts to synthesize
separation sequences or networks. They have developed a semi-
heuristic, semi-algorithmic method, which is implementable on
a computer. The most significant outcome of their work is the
well-known Thompson formula for determining the number of the
separation networks yielding pure products. The formula indicates
unequivocally that the number magnifies exponentially even for
this simple class of separation-network synthesis problems.

Aheuristic method has been proposed by Emtir, Rév, Mizsey, and
Fonyé (1999), which takes into account the energy consumption
for the separation of three-component feeds. They compared the
energy demand of the integrated and coupled systems for various
utilities. Demicoli and Stichlmair (2003) studied a separation net-
work comprising complex, batch separators. They have proposed a
novel operating mode for extracting efficiently the middle com-
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Nomenclature

Sets

C components
COq components in stream a
D dividers

F feeds

IM inner mixers

P products

PM product mixers
S separators
Parameters

FEy . [kg/s] the component flowrate of component c in feed

OC;s [$/kg] the overall cost coefficient of separator s
PRy  [kg/s] the component flowrate of component c in feed

Variables
fa,c [kg/s] component flowrate of component c in stream a
Xi j feed allocation ratio in stream (i, j)

Greek symbol

Aa splitting ratio of stream a
Functions
first(a) the feed stream a originated from

next(a) the set of elements following a
prev(a) the set of elements preceding a
prev2(a) prev(prev(a))

ponent from a three component feed stream. In the first stage,
the separator is operated in the closed operating mode with total
reflux without product withdrawal. In the second stage, the com-
plex column functions as an inverted column on the top of a regular
one.

Floudas (1987) has proposed a systematic computational
approach to the SNS involving a single feed stream, mixed products,
and simple and sharp separators with non-linear cost function. He
has solved the model resulting from the proposed super-structure
of the network by resorting to a conventional NLP algorithm in
GAMS. A method has been introduced by Quesada and Grossmann
(1995) to determine the global optima of SNS problems with linear
cost functions. The mathematical models based on the composi-
tion and component flowrates have been merged by resorting to a
reformulation-linearization technique to circumvent the complex-
ities due to the presence of bilinear terms in the model equations.

The notion of the rigorous super-structure has been presented
by Kovdcs, Ercsey, Friedler, and Fan (2000); it contains the optimal
network for every instance of the given problem. They have pro-
posed a novel algorithm for generating the rigorous super-structure
of an SNS problem involving only simple and sharp separators. The
resultant mathematical model is linear, thereby giving rise to the
solution without fail. More recently, Heckl, Kovacs, Friedler, Fan,
and Liu (2007) studied SNS involving separators of various fam-
ilies. They have demonstrated that the resultant novel approach
can yield a solution superior to the solution obtained when SNS
is carried out taking into account a single separator family. In the
rigorous super-structure proposed, the product streams are invari-
ably preceded by mixers. The mathematical model is formulated
in terms of the feed allocation ratios, which render possible the
solution by LP.

The algorithmic solution of any synthesis problem involves three
major steps including: the construction of the network’s structural
model; the generation of the linear or non-linear mathematical
programming model on the basis of the structural model; and the
solution of the resultant model. Naturally, the larger the structural
model, the more convoluted the mathematical model; and conse-
quently, the harder and slower it is to solve it. This implies that
it is imperative to construct the structural model with minimal
complexity.

The current work reassesses a class of SNS problems, termed
SNS-Multi for simplicity, posed by Heckl et al. (2007). Its aim is
to craft a reduced super-structure for SNS-Multi that renders it
possible to substantially facilitate the solution. SNS-Multi can be
stated as follows: determine the cost-optimal separation network
for transforming the compositions of n-component feed streams to
obtain the specified product streams with a given set of simple and
sharp separators where the available separators may belong to dif-
ferent separator families. Any separator’s cost is regarded as a linear
function of its mass load, and the cost of the separation network is
the sum of the costs of the separators therein.

2. SNS-Multi with unreduced super-structure

The main difference between SNS-Multi (Heckl et al., 2007) and
any conventional SNS is that while the former takes into account
multiple separator families, the latter involves only a single sepa-
rator family. Even at the dawn of SNS, Thompson and King (1972)
alluded to the feasibility of applying multiple separator families.
Nevertheless, it has attracted little attention. It is usually implicitly
understood that SNS is performed with a single separator family. It
is well known that (n — 1) different separations can be performed
on a stream containing n components using a single separator fam-
ily. k(n — 1) separations can be performed on such a stream applying
k multiple separator families. For instance, the separation of a mix-
ture comprising propylene (component A), propane (component B),
and propadiene (component C) into its components can be carried
out using three different separator families including distillation,
extractive distillation with a polar solvent, and extraction (King,
1980). The component orders in the stream vectors are: A, B, and
C for the first method; B, A, and C for the second method; and C,
A, and B for the third method. Deploying various separator families
maghnifies the search space, thereby enhancing the probability of
identifying a solution, which is superior to that attainable using a
single separator family. For example, let us suppose that pure prod-
ucts are to be produced from an n-component feed stream with
distillation only. If the relative volatilities of two components are
close to each other, the cost of separation would be expensive. The
cost can be significantly reduced by adopting another separator
family.

Heckl et al. (2007) have demonstrated that any SNS-Multi prob-
lem invariably gives rise to an optimal structure in which mixers
precede only the products. These mixers are termed product mixers.
The significance of this property is that it specifies the positions of
the mixers in the super-structure, thus greatly reducing the num-
ber of configurations to be explored. A stream can be linked only
to separators or to product mixers, the latter linkages being termed
bypasses. Naturally, the rigorous super-structure must contain all
feasible configurations; as a result, every stream must be divided,
and the outlets must be linked either to new separators or to prod-
uct mixers. An additional separator is incorporated only if it is
effective for separating at least one component contained in both
outlets. If more than one separator produces the same streams from
a given input, only the least expensive separator is included. In con-
ventional SNS, this is not an issue: each separator would produce
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Qe

Create one unexplored divider for
each feed stream

[ Create one mixer for each product |

-
Select an unexplored divider and
mark it as explored

Create a separator for each
possible cut, connect them with the
selected divider

Create unexplored dividers at the
outlets of the separators

Create a bypass to each mixer if
possible

Is there any more
unexplored divider

Fig. 1. Flowchart for generating the unreduced super-structure.

different streams. The installation of a bypass between an outlet
of any divider and the inlet of a mixer is possible only when every
component in the former appears in the product stream from the
latter. This strategy gives rise to the super-structure of the SNS-
Multi. We term this super-structure the unreduced super-structure
to differentiate it from the super-structure to be constructed in the
current work. The flowchart for generating the unreduced super-
structure is illustrated in Fig. 1, and a specific example is presented
in Fig. 2.

The initiation step creates one divider for each feed stream and
one mixer for each product stream with appropriate linkages. The
newly created dividers are termed unexplored, thus implying that
they have not yet been examined in the iteration step. The iteration
step selects any of the unexplored dividers, and subsequently cre-
ates a separator for each possible cut and a bypass to each mixer,
both of which are connected to the selected divider. This is immedi-
ately followed by the generation of a divider for each of the outlets
from the separators created. The iteration step is repeated until
all the unexplored dividers are exhausted, thereby terminating the
execution of the algorithm.

The mathematical model of the unreduced super-structure is
formulated in terms of the feed allocation ratio, x; j, introduced by
Kovacs et al. (2000), which specifies the fraction of the flowrate of
the feed stream in stream (i, j). One feed allocation ratio is defined
for each outlet of an individual divider. No additional variables need
to be defined to the outlets of the separators: a separator does
not induce change in the feed allocation ratio. The feed allocation
ratios completely determine the network’s structure, which in turn
determines the compositions of each stream.

The cost of the network, comprising the costs of the separators,
is minimized based on the mathematical model. The cost of an indi-
vidual separator can be calculated by multiplying the flowrate of the
inlet of the separator with its overall cost coefficient. The flowrate
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Fig. 2. Step-by-step generation of the unreduced super-structure: for clarity, every
mixer in this and all other figures is simplified as illustrated.

of any stream in the network can be expressed in terms of its feed
allocation ratio in conjunction with the appropriate component
flowrates of the corresponding feed stream. Material balances must
hold for the dividers, mixers, and separators in the super-structure.
One mass-balance equation is associated with each divider, and one
with each component of a product; these equations are needed for
the dividers and mixers. Material balances hold automatically for
the separators in this super-structure because they do not affect the
feed allocation ratios as mentioned earlier. Note that the equations
for the dividers reveal the difference between the feed allocation
ratio and the well known splitting ratio. For any given divider, the
sum of the splitting ratios of its outlets is always unity; in contrast,
the sum of their feed allocation ratios is equal to the feed allo-
cation ratio of its inlet. Naturally, the feed allocation ratios are in
the interval of [0, 1]. The resultant mathematical model is linear,
thereby giving rise to a great advantage: any linear model can be
solved efficiently and robustly. Nevertheless, the resultant super-
structure magnifies exponentially with the number of components
in the feed stream. The current work is intended to circumvent such
a situation.

3. Simplification of separation structures

For practicality, simplification is almost always desirable as long
as itdoes not alter the network’s performance. The simplification of
a separation network reduces the number of necessary separators,
thereby facilitating the network’s operation.

3.1. Simplification based on identical splitting ratios

As pointed out in an earlier work (Heckl et al., 2007), the optimal
structure can be simplified under some situations. Specifically, two
or more separators can be merged if their overall cost coefficients
are identical due to the fact that: they are of the same type; the
dividers for the top outlet streams of the separators are connected
to the same mixer; and the dividers for the bottom outlet streams of
these separators are also connected to the same mixer. Note that the
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Fig. 3. Merging of separators with the identical splitting ratios.

splitting ratios of the corresponding dividers are identical. Because
of the linearity of the costs of the separations, the merging of the
separators affects neither the structure’s cost nor the operation of
the network: the streams entering and leaving the merged part of
the network remain invariant.

Fig. 3 illustrates the merging. The inlet streams, a; and a;, in both
the unmerged and merged structures naturally must be identical.
Moreover, to ensure that the outlet streams also remain identical,
the following relationships must hold for d; and d,.

b1+C]=d1 (1)
by +cy =dy (2)

Similar equations must also hold for d3 and d4: the material bal-
ances need to be satisfied for each outlet of a divider. Expressing
the streams in terms of the component flowrates and taking into
account the types of separators result in the following expressions;

Uby,15 064,25 0, O]+ [fey 15 fey 25 0, 0] = [fg, 15 fay 25 0, 0] (3)
[sz,l »fb2,25 Ov 0] + [sz,] 7f(.‘2,27 0» O] = [fdz,lvfdz,Zv 05 O] (4)

where fy j, fc. j,and fy, j, i,j = 1, 2, are the component flowrates of
the jth component in streams b;, ¢;, and d;, respectively. The compo-
nent flowrates at the outlet of a divider can be calculated from those
of its inlet and from the splitting ratio of this outlet, for example,

see the following equation.

Ay Uy 15 Jay 21 = Uy 15 fpy 2] (5)

Expressing the component flowrates at each outlet similarly trans-
forms Egs. (3) and (4), respectively, into

Ay Uy 10 Jay 214 ey Uay 15 fay,2] = Aoy (Ufay 15 fay 2] + Ufay,15 fap.2])
(6)

)\bzlfalj »fal,2] + )\cz[faz,l sfa2,2] = )\dz([fal,l sfa1,2] + [fa2,1,fa2,2])
(7)

where Abys A and Ag,i=1,2, are the splitting ratios of streams
b;, ¢;, and d;, respectively.

The solution of the mathematical model yields the optimal
structure, for which the component flowrates and the splitting
ratios are known. As a result, only the splitting ratios in the merged
structure, A4, and A4,, are unknown. The two separators can be
merged only if the system of equations, comprising Eqgs. (6) and (7),
has a solution. This system of equations, however, is overdefined: it
has 2 variables and 4 equations, thus, rendering them solvable only
in special cases. For example, the system is solvable if the splitting
ratios corresponding to the same outlets are identical as expressed
below.

Ap; = Acy (8)
)“bz = }‘52 (9)

These equations also imply that A, = Ag, and A5, = Aq,.Itis worth
noting that the equations similar to Egs. (1) and (2) must hold for
the divider of the bottom streams in Fig. 3. The drawback of this
simplification is that it can be implemented only after the opti-
mal structure is determined when the values of the feed allocation
ratios, and consequently, the splitting ratios become known.

3.2. Simplification based on identical inlet composition

A judicious analysis reveals that the system of equations, com-
prising Egs. (6) and (7), can also be solved under the condition that
the compositions of the inlets of the two separators are identical,
ie,

y[fa1.lafa1,2]=Ifa2,1»faz,2] (10)

Subject to this equality, Egs. (6) and (7) can be rewritten, respec-
tively, as

)\bl +)/)\,Cl

Ty =Aq, (11)
)‘bz +]/)\,CZ

=y = Ag, (12)

Eqgs. (11) and (12) do not demand that the separators be connected
to the same mixers. The merged separator will be connected to each
of such mixers to which either of the original separator is connected.
Fig. 4 illustrates a simplification based on identical inlet composi-
tion. In this figure, Eq. (10) holds for the two separators with y = 2.
The divider for the top stream of the merged separator is connected
to three operating units, S, M;,and M, ; the corresponding splitting
ratios can be calculated, respectively, as follows:

03+2x0
hay = =5 — = 0.1 (13)
Ay = 70‘7123 08 _ 0.7666 (14)
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Fig. 4. Merging of separators with identical inlet composition.

0+2x0.2
&=y =0.1333 (15)

4. Reduced super-structure

Simplification based on identical inlet composition is much
more effective than simplification based on identical splitting
ratios. While the former can be applied to both the solution struc-
tures and the super-structure, the latter is applicable only to the
solution structures. Let us suppose that stream a is the inlet of sep-
arator Si. The component flow rates of stream a can be described
with the following equation;

o Xaq - FEﬁrst(a),c ceCOq
fa,l - {0 c ¢ COa (16)

where FE; . is the flowrate of component c in feed k; first(a) indi-
cates the feed stream from which stream a originates; and COq is
the set of components in stream a.

Let stream b the inlet of another Si-type separator; first(a) =
first(b); and COq = COy. In other words, streams a and b originate
from the same feed, and thus, they contain the same components.
As such, the two streams can be merged: they have the same com-
positions.

It is worth emphasizing that the compositions of the streams
of the super-structure are known, thereby simplification based on
identical inlet composition can be executed on the super-structure
prior to optimization. Merging the separators reduces the size of
the super-structure, thus simplifying the mathematical model and
reducing the solution time. Let us focus on Fig. 5, which exhibits part
of the unreduced super-structure of a separation network with a
five-component feed stream. Streams a and b have the same compo-
sition, and therefore, the two S2-type separators as well as the two
S3-type separators can be merged. The resultant simplified struc-
ture is illustrated in Fig. 6. The encircled part of this figure contains
two dividers and two mixers. The compositions of streams a and

F,
[el, c2, 3, c4, c5]

Fig. 5. Part of the super-structure before merging separators.

F;
[cl, c2, 3, c4, c5]

[0, ¢2, c3, c4, 0]

Fig. 6. Part of the super-structure after merging separators.

b are identical; as a result, it is possible to mix the streams first
and divide them later; see Fig. 7. This simplification is significant:
it minimizes the number of divider outlets, thus further decreasing
the number of variables.

Our aim is to merge all suitable separators in the unreduced
super-structure based on identical inlet composition. The resulting
structure is termed the reduced super-structure of the SNS-Multi
problem. In the unreduced super-structure the mixers always

F
[cl, c2, c3, ¢4, c5]

[0, c2, c3, c4, 0]

Fig. 7. Part of the super-structure after exchanging the positions of dividers and
mixers.
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Create one unexplored divider for
each feed stream

Create one mixer for each product

l

Select an unexplored divider and

mark it as explored

Create a separator for each
possible cut, connect them with the
selected divider

If two or more separator have the
same effect on the inlet then keep
just the least-cost separator

Select an unexplored outlet of the

separators and mark it as explored

Is there
another stream with the
ame composition in the
network?

yes

Create a new mixer-divider pair to
the outlet, the divider is unexplored

Connect the outlet into the mixer of
the other stream

Is there any more

unexplored outlet?

yes
no
Create a bypass to each mixer if
possible
Is there any more
idar?
unexplored divider? yes

Fig. 8. Flowchart for generating the reduced super-structure.

precede the product streams; in contrast, in the reduced super-
structure mixers can be found elsewhere. These new mixers are
termed inner mixers; all their inlets have the same composition.
The reduced super-structure is also a rigorous super-structure: the
unreduced super-structure has been proved to be rigorous, and
thus, the simplification only on the basis of the identical inlet
composition does not exclude any potentially optimal structure; it
only eliminates unnecessary duplications. Consequently, both the
unreduced and reduced super-structures lead to optimal solutions.
Moreover, these two solutions are identical if the problem under
consideration has a unique optimum, and all possible simplifica-
tions are performed on the solution structures.

There are two possibilities to generate the reduced super-
structure. The first generates the unreduced super-structure as
described in an earlier work (Heckl et al., 2007) and then carries out
all the possible mergers based on the identical inlet composition;
the second generates the reduced super-structure directly from the
input data. The streams originating from the same feed stream in
the reduced super-structure are mixed if they have identical com-
position. In the reduced super-structure, therefore, an inner mixer
precedes every divider, though the mixer might be equipped only
with a single inlet; see Fig. 7. Introducing inner mixers does not
magnify the size of the mathematical model: variables are assigned
only to the outlets of each divider.
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Fig. 9. Generation of the reduced super-structure: initialization and iteration 1.

What follows describes the stepwise generation of the reduced
super-structure; see Fig. 8. In the initialization step, one divider
is created for and linked to each feed stream, and one mixer is
created for and linked to each product stream; see Fig. 9. Subse-
quently, an iteration is performed as long as some dividers remain
unexplored. In the iteration, an unexplored divider is selected and
a separator for each possible separation is created and connected
to the selected divider. By taking into account several separator
families, various separators linked to the selected divider, would
yield identical outlet streams. Obviously, only the least-cost sepa-
rator should be retained in the reduced super-structure in this case.
Subsequently, the outlets from the separators created for each pos-
sible separation are examined. If the compositions of these outlets
are the same as the composition of a stream, which is already in the
network and connected to an inner mixer, the new outlet is also con-
nected to the same mixer. Otherwise, a new mixer—divider pair is
formed for and connected to this outlet. The new divider is marked
unexplored. Afterward, a bypassis created from the selected divider
to each product mixer created in the initialization step. The creation
of a bypass between an outlet of any divider and the inlet of a prod-
uct mixer is possible only when every component in the outlet of
the divider appears in the product stream from the mixer. Finally,
the selected divider is marked explored.

Figs. 9-12 illustrate the generation of the reduced super-
structure of a five-component example. Fig. 9 shows the
initialization and the first iteration. The encircled divider is selected
at the iteration step. No inner mixer exists in the structure at this
time; thus, a new mixer-divider pair is formed for every sepa-
rator outlet. In Fig. 10 the inlet of the selected divider contains
a single component, and thus, no further separation is possible;
consequently, only bypasses are created in this iteration. The third
iteration, exhibited in Fig. 11, indicates that a new mixer-divider
pair is formed for the top outlet of separator S,4, but the bottom out-
let is connected to an inner mixer already present in the network.
The final reduced super-structure is displayed in Fig. 12.

5. Mathematical model

The mathematical model of the reduced super-structure is for-
mulated in terms of the feed allocation ratios. Formulating the
mathematical models on the basis of compositions or component

[2,3,5,1]
D—@ Py
>
[0, c2, c3, c4]
[cl, ¢c2,0,0]
- [3,1,2,1]
F| ._%: SZ >—@ Pz
[10, 8, 12, 4]
[0, 0, c3, c4]
[c1,¢2,¢3,0] [5,4,5,2]
D> —>—ePD;
D>
[0, 0, 0, c4]

Fig. 10. Generation of the reduced super-structure: iteration 2.

flowrates gives rise to non-linear terms in the governing equations
of either the separators or the dividers.

Let C,F, P, D, PM, IM, and S be the index sets for the components,
feeds, products, dividers, product mixers, inner mixers, and separa-
tors, respectively. Consequently, FE; . is the flowrate of component
c in feed k; PRy ., the flowrate of component ¢ in product k; and
0OC;, the overall cost coefficient of separator s. prev(a) signifies the
set of operating units preceding a, and prev3(a) is a shorthand for
prev(prev(prev(a))). Similarly, next(a) signifies the set of operat-
ing units succeeding a. Thus, the objective function in terms of the

<]
[c1,0,0,0] [0,¢2,0,0]

[0, ¢2, ¢3, o4] [0, €2, ¢3, 0]
[2,3,5,1]
> @P
[cl, c2, 0, 0]
F] ._%: Szz
[10,8, 12, 4] B2
[0, 0, ¢3, c4] >—@ P,
[5,4,5,2]
P;
[c1,¢2,¢3,0]
D
.
D
[0,0,0, c4]

Fig. 11. Generation of the reduced super-structure: iteration 3.
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[c1, 0,0, 0] *Efcz’ 0,01
— Sty
= n
2
[0, c2, c3, c4] 10: €23, 0]
[2,3,5,1]
D—@ P,
Sl
[c1, c2, 0, 0] g
o—é k F
Fy = S7 D=
[10,8,12,4] [0, 0, ¢3,0]
4 [3,1,2,1]
[0, 0, c3, c4] > @P,
S (5.4,5,2]
F L > eP
[el, c2, ¢3, 0] J
D=

[0,0,0, c4]

Fig. 12. Generation of the reduced super-structure: iteration 18 and final structure.

separation cost, comprising the cost of each separator, is

F= Z Ocsxprev(s),s Z FEﬁrst(s),c s (17)

VseS Ve € COprey(s),s

which is to be minimized subject to the following constraints;

1= Z Xqj» ¥denext(F) (18)
Vj e next(d)
Z Xi,next(i) = Z Xd,j' VYdeD \ next(F) (19)
Vi e prev3(d) Vj € next(d)

Z Z (Xi,mFEﬁrst(i).c) = PRyext(m),c» YmePM,VceC (20)
Vi e prev(m)Vc e CO;

0<x4j<1, VY(d,j)eD x {SUPM} (21)

The cost of each separator is calculated as the product of its over-
all cost coefficient, OCs, and the flowrate of the separator’s inlet
stream. Moreover, COpey(s) s IS the set of components present in
the stream at the inlet of separator s, and Xpey(s) s is the feed alloca-
tion ratio at this inlet. Note that several paths may lead backward
from separator s in the reduced super-structure. An inner mixer
represents a junction in a path while going backward from a sep-
arator; however, all these paths originate from the same feed, and
thus, first(s) is unique. Eq. (18) signifies the dividers for the feed
streams; at these dividers, the splitting ratio and the feed alloca-
tion ratio are identical. Eq. (19) represents the material balances
around the inner mixer-divider pair. The sum of the feed alloca-
tion ratios at the inlets of the inner mixer is equal to the sum of
the feed allocation ratios at the outlets of the succeeding divider. It
is worth noting that the feed allocation ratios are not assigned to
the inlets of inner mixers, and therefore, the feed allocation ratios at

D,
D, (

Fig. 13. Material balance around a mixer—divider pair.

the inlets of the separators preceding the inner mixers are used. The
separators do not alter the feed allocation ratios. Eq. (19) imposes
a constraint on each component in every product. This equation
states that the sum of the component flowrates at the inlets of a
product mixer must be PRpexi(m),c- It is possible to define a product
without specifying the exact amounts of the components therein.
For example, we can prescribe the ratios of the components, the
upper and lower bounds of the flowrates of the components, or the
minimum or maximum amount of the product. The model’s capa-
bility is limited only by the requirement that all such constraints be
linear as well. Eq. (21) is a natural assumption, indicating that x; ;
cannot be negative or exceed one.

The material balance around an inner mixer—divider pair is illus-
trated in the following with a specific example illustrated in Fig. 13;
it gives

Xp; 54 T Xp, 51 =Xp; 52 +Xpy 53 + XDy M, (22)

In this example, prev3(D3) = {D1, D,}, next(D3) = {S2, S3, M>}.
Succeeding the generation, the sizes of the unreduced and
reduced super-structures are compared quantitatively.

6. Mathematical complexity

As mentioned earlier, the optimal structures derived on the basis
of the unreduced and reduced super-structures are identical if the
optimum is unique. The profound advantage of the reduced super-
structure is that it gives rise to the simplified mathematical model,
thus facilitating the solution.

The size of the mathematical model derived from either the
unreduced or reduced super-structures depends on the parameters
of the specific example, such as the numbers of the components and
available separators, as well as on the numbers and compositions
of the feed and product streams. Let us suppose that the separa-
tion network has only one feed stream and the available separators
belong to a single family. As such, the most important parameter
affecting the size of the mathematical model is the number of com-
ponents. The number of variables in the mathematical model equals
the number of all the outlets of the dividers throughout the super-
structure. These outlets are linked either to the separators or to the
mixers. The number of divider outlets linked to the mixers for the
products depends on the compositions in the products, thereby ren-
dering it difficult to determine the exact number of variables. On the
other hand, the number of separators in the unreduced and reduced
super-structures can be given explicitly; thus, the super-structures
will be characterized and compared on the basis of these numbers.

Let SN(n) be the number of separators in the unreduced super-
structure, where n is the number of components. The following
details the calculation and simplification of SN(n).
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Suppose that the separation occurs between the ith and the
(i+ 1) st component, thus requires one separator. The number of
separators continues to increase beyond one: additional separators
are needed to process the outlets of the current separator. The top
and bottom outlets contain i and (n — i) components, respectively,
and therefore [SN(i) + SN(n — i)] additional separators are required.
The initial separation can occur between the first and second com-
ponents, the second and third components, and so on, thus yielding
the following formula for SN(n) containing the sum;

n-1

SN(n) = 2[1 + SN(i) + SN(n — i)]
i=1
n-1

=(n=1)+ Y [SN()+SN(n - )] (23)

i=1

where

n-1
Zl =n-1. (24)
i=1

Obviously, no separation is needed for a pure component, i.e.,
n =1, and thus, SN(1) = 0.

1+SN(1)+SN(n—1)
+1+SN(2) + SN(n — 2)
+1+SN(3) +SN(n — 3)

+1 +SN(n —2)+ SN(2)
+1+4SN(n— 1)+ SN(1)

1+ SN(1)+SN(n-—2)
+1+4SN(2) + SN(n — 3)
+1+SN(3) +SN(n —4)

SN(n) = =SN(n-1) (26)
+l +SN(n —2)+SN(1)
+1+SN(n-1)+SN(n-1)

and thus,

SN(n)=3-SN(n—1)+1 (27)

To determine the growth of SN(n), the current recursive form must
be reformulated. The first step is to unfold the sum; see Eq. (25).
Subsequently, the terms must be reordered; see Eq. (26). It is worth
noting that SN(n) contains SN(n — 1), and therefore, a different
recursive form can be generated for SN(n); see Eq. (27). Adding 1/2
to both sides of Eq. (27) yields

SN(n)+%=3-5N(n—1)+%=3.[SN(n—1)+H (28)
By defining

g(n)=SN(n) + %, (29)
we obtain

gn)y=3.-gn-1) (30)
Continuing,

gm=3.3.g(n-2)=-..=3""1.g(1) (31)

Table 1
The number of separators in the unreduced, SN(n), and the reduced super-structure,
CN(n), based on component number, n

n 2 3 4 5 6 7 8 g 10
SN(n) 1 4 13 40 121 364 1093 3280 9841
CN(n) 1 4 10 20 35 56 84 120 165
Table 2
Component flowrates of the feed and the product streams of the first example
c1 (kg/s) c2 (kg/s) c3 (kg/s) c4 (kg/s)

F 10 8 12 4
Py 2 3 5 1
B 3 1 2 1
Ps3 5 4 5 2
Since

(1)=SN(1)+ 2o 1 -1 (32)
gl= 2=""3 %
we have, from Eq. (31),

3n—1
g(n) = —— (33)
Substituting the above expression into Eq. (29) yields
n-1 _

SN(n) = o1 5 ! (34)

This closed form indicates explicitly that SN(n) grows exponentially
as n increases.

Let CN(n) be the number of separators in the reduced super-
structure where n is the number of components. What follows
details the evaluation and simplification of the formulae for CN(n).
Suppose that all the available separators belong to a single family.
Consequently, if a stream contains i adjacent components, (i — 1)
separations can be carried out on this stream. Because of its con-
figuration, the reduced super-structure contains (n + 1 — i) streams
with i components adjacent to each other where n is the number
of components in the feed; i can be any integer number between 2
and n, thereby yielding

CN(n) = Z[(n+l —i).(i-1)] (35)
i=2

or

CN(n):Z(—i2+n~i+2~i—n—1) (36)
i=2

Table 3

The separators available in the first example

Separator Top-product Bottom-product Overall cost

designation components components coefficient, gs

St cl c2,c3,c4 4

5~ cl,c2 c3,c4 2

s3 cl,¢2,c3 c4 3

Table 4

Component flowrates of the feed and the product streams of the second example
cl (kg/s) c2(kgls) c3(kgls) c4(kg/s) c5(kg/s) c6(kg/s) c7(kg/s)

Fr 23 19 25 21 26 26 12

FE 12 11 8 6 2 6 15

Py 9 3 6 8 4 10 13

P, 14 10 8 8 11 5 §)

Ps3 5 10 10 3 1 4 2

Py 7 7 9 8 12 13 3
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Table 5
The separators available in the second example
Separator Top-product Bottom-product Overall cost
designation components components coefficient, gg
SK1 cl c2, c3, c4, ¢5, 6, c7 1.5
S cl,c2 3, c4, ¢5, ¢6, c7 3
& cl,¢2,c3 c4, ¢5, ¢6, c7 2
SRa cl,c2,c3,c4 c5, ¢6, c7 2.5
SE2 cl1,¢2,c3,c4,c5 c6, c7 4
& cl,¢c2,c3, c4, c7 4
c5, c6
SE1 c4 c6, c3, c1,c7,¢c2, c5 4.5
52 c4, c6 c3,cl,c7,¢2,¢5 1
s= c4, ¢6, c3 cl,¢7,¢2,¢5 2.5
SE4 c4, c6, 3, c1 c7,¢2,c5 3.5
5 c4, ¢6, c3, c1,c7 c2,c5 1.75
S8 c4, ¢6, c3, cl, c7, c5 45
c2
SK cl,¢5, c3, c4 c7,c2,c6 6.6

Partitioning the sum in the right-hand side of the above expression
into 3 parts results in

CN(m) =D (=) + Y li-(n+2)]+ Y (-n-1) (37)
i=2 i=2 i=2
where
Sy =[St =- <2n3+§nZ+n ) ]>
i=2 i—1
=3 "3 76" (38)
Z[i~(n+2)] =(n+2)-) i=(n+2). [@_1}
i=2 i
n3  3.n2
=7t 2 (39)
Z(—n—l)z(n—Z).(_n_l):_n2+1 (40)

D;

+

Thus,

n—n

CN(n) = 6

Fig. 15. Optimal structure of the second example.

Note that CN(n) grows polynomially with n.

xD1M1=0.2
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Fig. 14. Optimal structure of the first example.
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Table 6
Component flowrates of the feed and the product streams of the third example
cl c2 c3 c4 c5 c6 c7 c8 c9 c10 cl1 cl2 c13 cl4 c15
Fi 23 19 25 21 26 26 2 6 4 2 7 5 5 © 8
F, 12 11 8 6 2 6 8 4 6 1 1 9 5 3 4
F3 2 1 7 6 8 2 5 3 2 7 2 8 4 6 8
Fa 2 3 5 7 11 13 17 23 27 31 37 7 6 4 5
Py 11 6 11 15 15 23 20 24 32 32 40 3 8 5 1
Py 16 11 15 8 6 5 2 1 2 3 1 7 2 7 4
Ps3 5 14 10 3 11 4 2 4 2 2 5 10 6 8 12
Py 7 3 9 14 15 15 8 7 3 4 1 9 4 2 8
Table 7
The separators available in the third example
Separator designation Top-product components Bottom-product components Overall cost coefficient, gg
s cl c2, 3, ¢4, ¢5, 6, ¢7, ¢8, ¢9, c10, c11, c12, c13, c14, c15 1.5
Sk cl,c2 c3, ¢4, ¢5, ¢6, c7, ¢8, €9, c10, c11, c12, c13, c14, c15 3
Sk3 cl,c2,c3 c4, ¢5, ¢6, c7, ¢8, 9, c10, c11, c12, c13, c14, c15 2
s& cl,c2,c3,c4 ¢5, ¢6, ¢7, ¢8, ¢9, c10, c11, 12, c13, c14, c15 2.5
SRS cl, c2, c3, c4, c5 6, c7, c8, ¢9, c10, c11, c12, c13, c14, c15 4
Sk6 cl,c2,c3, c4, c5, c6 c7,¢c8,c9, c10, c11, c12, c13, c14, c15 2
S cl, c2, ¢3, c4, ¢5, ¢6, c7 8, 9, c10, c11, c12, c13, c14, c15 3
& cl, ¢2, ¢3, ¢4, ¢5, ¢6, ¢7, c8 9, c10, c11, c12, c13, c14, c15 5
Sk9 cl, c2, c3, c4, c5, ¢6, c7, 8, c9 c10, c11, c12, c13, c14, c15 3
SET cl, c2, ¢3, c4, ¢5, ¢6, c7, c8, ¢9, c10 cl11, c12, c13, c14, c15 2
sg cl, ¢2, ¢3, ¢4, ¢5, ¢6, ¢7, ¢8, ¢9, c10, c11 c12, c13, c14, c15 4
SR12 cl1, c2, 3, ¢4, c5, ¢6, c7, c8, ¢9, c10, c11, c12 c13, c14, c15 2.7
SR cl, ¢2, ¢3, c4, ¢5, ¢6, ¢7, ¢8, ¢9, c10, c11, c12, c13 c14, c15 6
SE& cl, ¢2, ¢3, ¢4, ¢5, ¢6, ¢7, ¢8, ¢9, c10, c11, c12, c13, c14 c15 2.3
SE1 c5 c15, c8, ¢9, c1, c6, c7, c3, c4, c10, c11, c14, c13, c12, c2 7
SE2 c5, cl15 c8, ¢9, cl, c6, c7, c3, ¢4, c10, c11, c14, c13, c12, c2 5
s= c5, c15, c8 9, c1, ¢6, c7, c3, ¢4, c10, c11, c14, c13, c12, c2 3
SE& ¢5, c15, ¢8, c9 c1, ¢6, ¢7, c3, ¢4, 10, c11, c14, c13, c12, 2 1
SE2 5, c15,¢8, ¢9, c1 6, ¢7, c3, ¢4, c10, c11, c14, c13, c12, c2 6
S8 c5, c15, ¢8, 9, c1, c6 c7,¢3, ¢4, c10, c11, c14, c13, 12, c2 5%
s& ¢5, c15, ¢8, ¢9, c1, ¢6, c7 c3, ¢4, 10, c11, c14, c13, c12, c2 3.4
SE8 5, c15, ¢8, ¢9, c1, ¢6, c7, c3 c4, c10, c11, c14, c13, c12, c2 45
SE9 c5, c15, ¢8, ¢9, c1, ¢6, c7, c3, c4 c10, c11, c14, 13, c12, c2 3.6
sE ¢5, c15, ¢8, ¢9, c1, ¢6, c7, c3, ¢4, c10 cl11, c14, c13, c12, c2 2
SEN 5, c15, ¢8, ¢9, c1, ¢6, c7, c3, c4, c10, c11 cl4, c13, c12, c2 4
51 5, c15, ¢8, ¢9, c1, ¢6, c7, c3, ¢4, c10, c11, c14 c13,c12, c2 2.9
SEB ¢5, c15, ¢8, ¢9, 1, ¢6, c7, c3, ¢4, c10, c11, c14, c13 c12, c2 3
SEL ¢5, c15, ¢8, ¢9, 1, ¢6, ¢7, ¢3, ¢4, c10, c11, c14, c13, c12 2 2.3
S cl, 2, c3, ¢4, ¢8, ¢9, c10, c11, c12, c13, c14 c15 0.2
Sz cl,¢2,¢9, 10, c11, 12, c13, c14 c15 0.1

Itis worth noting that as discernable from their closed forms, the
rates of growth of SN(n) and CN(n) are exponential and polynomial,
respectively. Moreover, the latter is not noticeably steep. Table 1
illustrates the rates of growth of SN(n) and CN(n).

In the following, the method based on the reduced super-
structure will be applied to three examples. Our theoretical
exploration indicates that the computation and effort required will
decrease substantially.

7. Examples

In the first example, 3 multi-component product streams are
to be produced from a 4-component feed stream. All separa-
tors belong to a single separator family. Tables 2 and 3 contain
the input data. The generation of the reduced super-structure
is illustrated in Figs. 9-12. Subsequently, the mathematical pro-
gramming model is generated from the reduced super-structure.
This example features 10 separators and 10 dividers; each divider
is connected to all 3 product mixers. Consequently, there are
40 divider outlets in the reduced super-structure, representing
40 variables in the mathematical programming model. If this
model is based on the unreduced super-structure, the number of
variables is 94. Fig. 14 exhibits the optimal structure of the exam-
ple.

The second example comprises 7 components, 2 feed streams,
4 product streams, and 13 separators belonging to 3 separator fam-
ilies. Tables 4 and 5 list the input data. The optimal structure is
exhibited in Fig. 15. The cost of the network is 261.1 $/s. The same
optimal structure is obtained with either the reduced or unreduced
super-structure; however, the computational time with the former
is 0.453 s, and that with the latter 15 s on a PC (AMD-XP 3 GHz).
As mentioned earlier, the difference in the solution time increases
rapidly with the increase in the problem size.

The third example comprises 15 components, 4 feed streams,
4 product streams, and 30 separators from 3 different separator
families. Tables 6 and 7 list the input data. The cost of the network
is 1193.9$/s. With the reduced super-structure, this problem has
been solved within merely 86.1 s on the same PC mentioned above
while with the unreduced super-structure the problem has failed
to yield a solution.

The solver and the three examples together are available
for downloading from web page http://www.dcs.vein.hu/capo/
demo/sns/heckl2008.

8. Conclusions

The current work re-addresses a separation-network synthesis
problem involving various separator families based on different
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separation methods. A systematic method is proposed for con-
structing the reduced super-structure of the problem. It has been
proved that this reduced super-structure leads to the same optimal
structure as that obtained with the unreduced super-structure.
The closed form of the formulae has been derived to compute
the sizes of the reduced as well as unreduced super-structures.
With the increase in the problem size, the former magnifies only
cubically, while the latter magnifies exponentially. Consequently,
problems of the type considered in the current work can be solved
substantially faster with the reduced super-structures than with
the unreduced super-structures.

The main advantages of the proposed method are: it is algorith-
mic at each step; insures the generation of the optimal solution;
and exceedingly effective so that it is applicable to problems of
considerable sizes. Nonetheless, it has some limitations also: only
single and sharp separators with proportional cost functions are
taken into account. The future work would involve separators with
various cost functions and/or non-sharp separators.
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