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A new solution technique is proposed here for a specific kind of separation-network synthesis (SNS) 

problem, using Branch-and-Bound (B&B) framework and linear programming (LP). The suggested 

method determines effectively the structure and flowrates of the optimal separation network. 

The method is illustrated by the solution of an SNS problem introduced in (Kovacs et al., 1995). The 

aim is to produce three pure product streams from two three-component feed streams with minimal 

cost. The rigorous super-structure of the problem is given by (Kovacs et al., 1995). The term itself was 

defined by Kovacs et al. (1999). The main idea is that it can be proved that the rigorous super-structure 

contains at least one optimal structure. The mathematical programming model generated from this 

rigorous super-structure is non-linear.  

The goal of the present work is to determine the optimum of the aforementioned model effectively. The 

proposed method handles the splitting ratios of the dividers as intervals. A B&B method operates on 

these intervals. A branching step split one of the intervals. The bounding function approximates the 

concave cost functions of the separators. This function can be determined by solving LPs. The solution 

of the non-linear problem can be determined with arbitrary precision. 

1. Introduction 

Separation-network synthesis is an important area of process synthesis. It plays significant role in the 

chemical and allied industries, where almost every process needs some separation activity, for 

example, Huang et al. (2008), Marty et al. (1994), and Sutherland (2007). For a given problem, there 

are a plethora of separation networks yielding the desired product streams from the given feed 

streams. These networks differ in the separators they use and the connections between them, i.e., they 

have different structure. Our goal is to determine the solution structure with the lowest possible cost. In 

this work the mathematical model is formulated in terms of component flowrates and splitting ratios, 

where the non-convexities arise in the model of the dividers. 

The examined problem contains simple and sharp separators, mixers, and dividers. A mixer merges 

two or more streams and the output stream is the sum of the corresponding component flowrates of the 

input streams. A divider splits its input stream into two output streams according to the corresponding 

splitting ratio as shown by Eq. 1.  

 (1) 

 is the flowrate of component  in stream  and  is the splitting ratio of the first output of the 

divider . ST1 is the inlet, ST2 and ST3 are the outlets of the divider. 

A separator intends to separate its input stream into two output streams. In contrast to dividers, the 

compositions of the output streams of a separator differ from each other. In the ideal case, termed as 
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sharp separation, each component of the input appears either in the top or in the bottom output. Simple 

separators have exactly one input and two output streams. In this paper simple and sharp separators 

are considered. The cost of the network is the sum of the costs of the separators and the cost of a 

separator is a concave function of its mass load.  

2. Motivating example 
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Figure 1: Rigorous super-structure for the example 

An SNS problem, introduced in (Kovacs et al., 1995), is shown in Figure 1 to illustrate the operation 

and effectiveness of the proposed method. Two simple and sharp separator types are available here. 

S1 and S3 belong to the first type which separates between the first and the second components, S2 

and S4 belong to the second type which separates between the second and the third components. The 

separators' cost function is  in both cases, where  is the total flowrate at the inlet of the separator. 

3.  Optimization method 

In the constructed component-based mathematical model the 

component flowrates and the splitting ratios are the variables. 

The splitting ratios clearly define the component flowrates, thus, 

the splitting ratios can be regarded as independent variables. 

3.1 Causes of the non-linearity of the mathematical model 

The non-linearity of the model can be traced back to two 

different causes. First, the equations of the dividers are non-

linear in component flowrate based model. To resolve this 

problem, a splitting interval is introduced to replace the splitting 

ratio as shown in Figure 2. A B&B method is also introduced, 

which works on these intervals. 

Eq. 1 can be replaced by Eq. 3 and Eq. 3 where  and  represent the lower and upper bounds of 

the splitting interval corresponding to divider D1. 
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Figure 2: Replacing splitting ratio 

with splitting interval 
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 (2) 

 (3) 

Second, the cost functions of the separators are concave. This problem is handled by constructing a 

linear lower estimating function of the original cost function in the specified interval. If a lower 

estimating function is determined for every separator then a lower bound can be also calculated for the 

total cost of the network. 

3.2 Sub-problems and branching step 
The rigorous super-structure in Figure1 contains four dividers; therefore, four splitting ratios should be 

managed together. Each splitting ratio is replaced by an interval, thus, a sub-problem can be described 

with 8 parameters ( , , , , …). Figure 3 shows a sub-problem where the four thin line 

represents the whole [0, 1] interval, i.e., the search space, corresponding to the four dividers. The bold 

lines mean the actual values of the splitting intervals in the current sub-problem. 
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Figure 3: Branching step of the B&B method in the illustrative example 

In a branching step, the widest interval is chosen and divided into two equal parts. If more than one 

interval has the same length then the first such interval is split. In the root of the B&B tree the [0, 1] 

interval is assigned to all dividers.  

3.3 Sub-problem selection 
The sub-problems generated during the branching step of the B&B method are stored in a list. The list 

is sorted according to the lower bounds of the sub-problem’s costs. The first element of the list is 

chosen at sub-problem selection, which now has the lowest estimated cost, and the generated child 

problems are inserted to the proper positions according to given ordering. This method implements a 

directed depth-first search. Other sub-problem selection methods have been also examined, but they 

were inferior compared to the proposed one. 

3.4 Minimum and maximum loads for the separators 

The minimum, , and maximum, , loads of a separator has to be computed to determine the lower 

estimating function of a sub-problem.  and  are computed via LP’s. The proposed LP’s contain 

the material balances for dividers, the constraints for splitting intervals, the material balances for 

mixers, and the material balances for separators. 
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Figure 4 shows that eight LPs are generated and solved for the actual sub-problem. For clarity, only 

LP1 and LP2 are detailed. LP1 minimizes the total flowrate of stream ST7, the input of separator S1. 

LP2 maximizes the total flowrate of stream ST7. LP3 minimizes the total flowrate of stream ST8, the 

input of separator S2, and so on. 
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Figure 4: calculating the lower and upper bound for the separator’s load 

3.5 Calculation of the bounding functions 
Now, our goal is to calculate a lower bound for a given 

sub-problem. The cost of the separation network is 

specified by the sum of the cost of separators, so we need 

lower estimation functions for the separators. The cost 

function of a separator is indicated by the solid line shown 

in Figure 5. The dashed line is the linear lower estimating 

function in the [ , ] interval. The  and  

parameters, i.e., the lower and upper bounds of the 

specific separator's input in the corresponding sub-

problem are calculated in the previous subsection. The 

corresponding cost of the minimum, , and maximum 

load, , are given by Eq. (4) and Eq. (5). 

Eq. (6) and Eq. (7) define the  and  parameters of the lower estimating function, where  is the 

proportional part of the estimating function and  is the fixed part of the linear function. 
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 (5) 

 (6) 

 (7) 

At the beginning of the B&B method, the sub-problems contain wide intervals, so the difference of  

and  is large as well. This results an inaccurate lower estimation. After a number of iterations, the 

length of the intervals decrease and the accuracy of the estimation increases. 

3.6 Lower bound of a sub-problem 
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Figure 6: Calculating the lower bound of a sub-problem by solving the 9
th
 LP 

After the lower estimating functions for the separator’s cost are determined, the lower bound for the 

sub-problem can be calculated by solving the 9
th
 LP. This LP differs in the objective function from the 

previous LP’s. Instead of minimizing or maximizing the load of a separator it aims to minimize the cost 

of the whole network. Figure 6 illustrates the computation of the lower bound of a sub-problem using 

LP 9. The objective function in Eq. 8 is the sum of the four lower estimating functions. 

 (8) 

Two terminating criteria are considered for the B&B procedure. If the  and  values coincide then a 

leaf of the B&B tree is reached. In this case, the exact value, not only a lower bound, is obtained. In 

practice, the distance of  and  is calculated and if the distance is smaller than a predefined 

tolerance, e.g. 0.0001, then the two points is deemed coinciding. However, this method does not seem 

to be computationally effective. Consequently, another terminating criterion is proposed. If a splitting 

interval, [ ], is narrow enough then it is not divided any more. If all such intervals are narrow 
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enough then the sub-problem is regarded as a leaf. It is worth noting that if the size of the interval 

[ ] is small then the [ , ] and consequently the [ ] intervals are also small. The tolerance 

value significantly affects the running time of the algorithm and the accuracy of the solution. 

Computational results with different parameters are presented in the following section. 

4. Evaluation of results 

Solving the motivating example with the proposed method results the optimal network with cost 

62.5115, which is the same as in the literature. The intervals of the dividers are the following: : 

[0.999939, 1], : [0, 0.00006103], : [0.999939, 1], : [0.239197, 0.239258]. Practically, the whole 

input streams of dividers  and  proceeds to the first output stream and the whole input stream of 

divider  proceeds to the second output stream. These dividers do not perform splitting; therefore, the 

solution network does not contain them. 23.92% of the input stream of  proceeds to the first and 

76.08% proceed to the second output stream. 

Table 1:  Results of the different solution algorithms 

Algorithm  Cost Time [s] Iterations 

OpenOpt NLP V1 66.6841 *11.35 614 

OpenOpt NLP V2 70.9611 10.41 559 

IGOS ε=0.01 62.4122 1.97 1787 

IGOS ε=0.001 62.4998 3.25 3239 

IGOS ε=0.0001 62.5115 **8.41 9337 

Solution in literature 62.51   

 

Table 1 shows the results compared with the OpenOpt NLP solver (National Academy of Sciences of 

Ukraine, 2012) where V1 and V2 indicate the various stating points. OpenOpt is an open source, multi-

platform optimization framework written in Python language. The built-in, R algorithm based ralg 

method is used with OpenOpt. IGOS (Interval Global Optimizer for SNS) denotes the presented 

algorithm and ε denotes the tolerance for the width of splitting intervals. 

The proposed method** requires less computational time than the NLP solver*, even with tolerance 

ε=0.0001 and it guarantees the global optimum while the NLP did not. 

5. Acknowledgement 

This publication/research has been supported by the TAMOP-4.2.2/B-10/1-2010-0025 project. 

References 

Heckl I., Friedler F., Fan L.T., 2010, Solution of separation-network synthesis problems by the P-graph 

methodology, Computers & Chemical Engineering 34, 700-706. 

Heckl I., Kovács Z., Friedler F., Fan L. T., Liu J., 2007,  Algorithmic synthesis of an optimal separation 

network comprising separators of different classes, Chemical Engineering and Processing 46. 

Huang H-J., Ramaswamy S., Tschirner U. W., Ramarao B. V., 2008, A review of separation 

technologies in current and future biorefineries, Separation and Purification Technology 1-21. 

Kovács Z., Ercsey Z., Friedler F., Fan L.T., 1999, Exact Super-Structure for the Synthesis of 

Separation-Networks with Multiple Feed-Streams and Sharp Separators, Computers & Chem. Eng.  

Kovács Z., Friedler F., Fan L. T., 1995, Parametric Study of Separation Network Synthesis: Extreme 

Properties of Optimal Structures, Computers & Chemical Engineering 19, 107-112. 

Marty A., Combes D., Condoret J.-S., 1994, Continuous reaction-separation process for enzymatic 

esterification in supercritical carbon dioxide, Biotechnology and Bioengineering 43, 497-504. 

Cybernetics institute, National Academy of Sciences of Ukraine, 2012, openopt.org 

Sutherland K., 2007, Life sciences: Separations in biotechnology, Filtration & Separation 44, 27-29. 

 


