
Computers and Chemical Engineering 26 (2002) 617–630

An accelerated Branch-and-Bound algorithm for assignment
problems of utility systems

Alexandros M. Strouvalis a, Istvan Heckl b, Ferenc Friedler b, Antonis C. Kokossis c,*
a Department of Process Integration, Uni�ersity of Manchester, Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK

b Department of Computer Science, Uni�ersity of Veszprém, Egyetem u.10, Veszprém H-8200, Hungary
c Department of Chemical and Process Engineering, School of Engineering in the En�ironment, Uni�ersity of Surrey, Guildford GU2 7XH, UK

Abstract

A methodology is proposed for implementing logic and engineering knowledge within a Branch-and-Bound algorithm and with
a purpose to accelerate convergence. The development addresses assignment problems of utility networks with an emphasis on the
optimal allocation of units for maintenance problems. Proposed criteria are presented to automatically tailor the solution strategy
and fully customise the optimisation solver. Model and problem properties are exploited to reduce the solution space, prioritise
the branching of nodes, calculate lower bounds, and prune inferior parts of the binary tree. Comparisons with commercial MILP
solvers demonstrate the significant merits of customising the solution search engine to the particular solution space. Extraction of
knowledge and analysis of operations is conceptually supported by the graphical environment of the Hardware Composites.
© 2002 Published by Elsevier Science Ltd.

Keywords: Turbine networks; Maintenance scheduling; Operational planning; MILP solvers; Hardware composites

www.elsevier.com/locate/compchemeng

1. Introduction

The impact of Mathematical Programming proves
significant through a wide range of applications. Opera-
tions Research groups developed and contributed con-
siderable part of the available optimisation tools. At
their best, they epitomise general theoretical, computa-
tional and numerical knowledge in relevance to the
different classes of problems. Past methods have proved
unable to capture application features automatically. In
the absence of specific knowledge, the use of general-
purpose heuristics remains the only venue to accelerate
the search and/or reduce the solution space. Consider-
ing that optimisation technology is a natural extension
of simulation—now widely accepted in industry—it
might be instructive to recall that simulation earned
acceptance and credit only with the use of customised
algorithms (c.f. the inside-out algorithm for distilla-
tion). In a similar vane, optimisation solvers should
make an effort to systematically incorporate problem

information. In the case of MILP’s, the efficiency of a
Branch-and-Bound algorithm is affected by the node
branching criteria (Geoffrion & Marsten, 1972; Parker
& Rardin, 1988; Floudas, 1995). In the absence of
specific knowledge, the use of general search rules can
not guarantee performance tantamount to the difficulty
or the actual size of the problem.

A first major contribution to exploit problem logic
involved the modelling stage. Floudas and Grossmann
(1995) reviewed methods for reducing the combinato-
rial complexity of discrete problems using logic-based
models. Raman and Grossmann (1992) reported im-
provements in solving MINLP’s with a combined use of
logic and heuristics. They illustrated their ideas with
inference logic for the branching of the decision vari-
ables (1993), and studied the use of logical disjunctions
as mixed-integer constraints (1994). Turkay and Gross-
mann (1996) extended the application of logic disjunc-
tions to MINLP’s using logic-based versions of OA and
GBD algorithms. Hooker, Yan, Grossmann and Ra-
man (1994) applied logic cuts to decrease the number of
nodes in MILP process networks models. Friedler,
Tarjan, Huang and Fan (1992) illustrated the potential
for dramatic reductions in the solution space. Friedler,

* Corresponding author. Tel.: +44-1483-300800; fax: +44-1483-
686581.

E-mail address: a.kokossis@surrey.ac.uk (A.C. Kokossis).

0098-1354/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.
PII: S0098 -1354 (01)00788 -8

mailto:a.kokossis@surrey.ac.uk

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630618

Varga and Fan (1995) later introduced a decision map-
ping approach that is particularly efficient for process
synthesis applications. Vecchietti and Grossmann
(1999) discussed the development of a solver (LOG-
MIP) for solving disjunctive, algebraic MINLP or hy-
brid non-linear optimisation problems. They later,
(2000) presented a modelling language to set up the
disjunctions and logical constraints. Lee and Gross-
mann (2000) proposed a non-linear relaxation of the
Generalised Disjunctive Programming and developed a
special Branch-and-Bound algorithm that makes use of
information of the relaxed problem to decide on the
branching of terms of disjunctions.

The present work explains the integration of knowl-
edge at a more advanced level: the solution search
engine. The problem structure is exploited to prioritise
and co-ordinate the optimisation search. A Customised
Branch-and-Bound Solver (B&B) is developed to incor-
porate conceptual information. The approach reports
significant reductions in the computational effort and
supplements the work of Strouvalis, Heckl, Friedler
and Kokossis (2000). The methodology makes use of
Hardware Composites, (Mavromatis & Kokossis,
1998a,b,c; Strouvalis, Mavromatis & Kokossis, 1998).
The tool supports the customisation of the algorithm,
provides insights of utility operations and promotes the
understanding of results.

2. Assignment problems and optimisation challenges

The problem taken into account deals with the as-
signment of units to shut-down periods. The appropri-
ate sequence of switching off turbines and boilers for
preventive maintenance contributes to the reliability,
availability and profitability of the entire system. Each
period relates to either a single or multiple sets of
constant demands in power and process heat. Optimal
scheduling assumes meeting demands and maintenance
needs while minimising the operational cost. Switching
off units imposes penalties to the economic perfor-
mance of the network. As less efficient units are loaded
or power is purchased from grid to compensate for the
ones maintained, optimisation has to consider demand
variations over time, differences in the efficiencies of
units and feasibility aspects.

Formulations yield MILP problems with a consider-
able number of variables. Constraints are linear and
binary variables are assigned for the ON/OFF status of
units. Planning and Scheduling Problems of large-scale
networks are computationally expensive or even in-
tractable. This is due to the exponential growth of
combinatorial load with the number of periods and
units. Conventional approaches suggest the formulation
of efficient models solved by standard commercial opti-
misation platforms. Even for moderate networks, how-

ever, the problem assumes prohibitive dimensions.
Furthermore, due to minor differences in nearby solu-
tions, the Branch-and-Bound trees are generally flat
and difficult to fathom. General-purpose solvers are
unable to capitalise on available information out of the
general-purpose tuning, bounding and pruning frame-
work they employ. Therefore, there is scope for efficient
optimisation tools customised to the particular
application.

3. Development of the Branch-and-Bound algorithm

The problem domain consists of three major compo-
nents: utility network, demands, and maintenance re-
quirements. Efficiencies and layout of units, operational
costs, and constraints set up the network component.
The fluctuating pattern of demands is a parameter of
the problem along with the maintenance needs of each
turbine and boiler. The problem domain is researched
to define and prioritise the solution space and thus
customise the algorithm. Conceptual analysis, feasibil-
ity assessment of maintenance scenarios, and cost as-
sessment of basic maintenance scenarios are employed
to preprocess the space. Conceptual analysis is achieved
by plotting demands on the Hardware Composites and
understanding the role of units over time. A set of LP’s
are solved to find infeasible options and objective func-
tion values of modes corresponding to the shut-down of
individual units in all possible periods.

A standard B&B algorithm (i.e. Dakin, 1965; Flou-
das, 1995) is shown in Fig. 1(a) and consists of six
major steps: (i) initialisation, (ii) termination, (iii) selec-
tion of candidate subproblem, (iv) relaxation (bound-
ing), (v) pruning and (vi) separation (branching). The
proposed customisation spans over the four main stages
(highlighted boxes in Fig. 1(b)): candidate problem
selection, bounding, branching and pruning. Special
additional functions identify (mark) and exclude
(delete) inferior nodes that should not be enumerated.

The contributions are at two levels.
(i) The conceptual analysis of the problem and the

assignment of priorities (period and unit).
(ii) The tuning and customisation of the solver to the

particular application.
The reduction of the solution space is accomplished

by screening out infeasible and redundant combinations
of variables. This first level makes simple and straight-
forward use of the engineering information and is re-
ferred as the Preprocessing Stage. The second level
constitutes a more refined analysis of the knowledge.
The basic idea is to replace general B&B rules by a
number of criteria and functions to co-ordinate the
branching and enhance the pruning.

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630 619

3.1. Solution space preprocessing

3.1.1. Conceptual tools
The Hardware Composites have been developed for

representing the feasible and optimal space of steam
turbine networks. Visualised solution spaces function as
‘maps’ where demands are traced and corresponding
turbine modes identified. The tool is based on the
well-established Willans line (Church, 1950; Kearton,
1958) which models the expansion of steam through
cylinders. For a single turbine t (Fig. 2(a)), inlet steam
flowrate MSt is given by:

MSt=mtE+ct (1)

where E is the turbine power output, mt the slope of the
line associated with the expansion path efficiency and ct

the no-load constant. Feasible modes locate on the
Willans line.

For a backpressure passout turbine (Fig. 2(b)) the
second cylinder gives rise to an additional term ac-
counting for the passout flowrate and the associated
power generation. The inlet steam consumption is given
by the equation:

MSt=mtE+
�

1−
mt

gt

�
S+ct (2)

Fig. 1. (a) Standard and (b) customised Branch-and-Bound algorithm.

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630620

Fig. 2. Willans lines for (a) single and (b) backpressure passout
turbines.

An alternative and equivalent representation is
shown in Fig. 3(b); the Hardware Composites are
drawn with the power and passout steam as co-ordi-
nates. This version allows for directly spotting sets of
demands on the solution space and is mainly adopted
in the present work.

3.1.2. Assignment of priorities
The relative position of the demands and the units on

the Hardware Composites determines favourable, unfa-
vourable and impossible maintenance combinations. As
units are switched off, the penalties imposed to the

Fig. 3. Alternative Hardware Composites representations: (a) inlet
steam vs. power output and (b) passout steam vs. power output.

where S stands for the steam passout demand and gt is
the Willans line slope associated with the high-pressure
expansion path. A turbine capability diagram may be
restrained by lines rt= (1−mt/gt) and pt=1/(1/mt−1/
gt) corresponding to power and inlet steam capacities,
respectively. Feasible operational modes are all inside
the capability diagram. Operation of boilers and gas
turbines is similarly defined by linear models presented
in Appendix A.

The application of Construction Rules of Mavroma-
tis and Kokossis (1998b) resolves efficiency conflicts
and structures the optimal solution space of the entire
turbine network. The rules impose full loading of the
most efficient expansion paths prior to less efficient
ones. Slopes m and g (incremental efficiencies) of the
Willans lines define the line sequence on the Hardware
Composites. Objective is minimisation of the inlet
steam consumption, or equivalently the cost of fuel
burnt in the boiler house.

Given the efficiencies and capacities of turbines (ca-
pability diagrams) and boilers, the Hardware Com-
posites of a network featuring three steam turbines and
two boilers are shown in Fig. 3(a). Any point on the
Composites corresponds to unique set of demands and
optimal mode. P, for example, designates the network
operation for meeting power ep and passout sp demands
with the least steam requirement MSp. The path from
the graph origin to P reveals the load of cylinders and
depicts the role of units. The high-pressure cylinders of
T2 (at full load) and T1 (supplementary) supply passout
sp. The T1 low-pressure cylinder generates the remain-
ing power output requirement of P. Dashed zones over
the Hardware Composites denote operation of boilers
and their steam generation capacities. Less fuel-con-
suming boilers first switch on to meet turbine inlet
steam requirements. For greater flowrates (upper-right
part of solution space) additional boilers accommodate
the demands. At P, inlet steam MSp is entirely provided
by Boiler 1.

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630 621

objective function vary with the (i) unit efficiency, (ii)
the efficiency of the units available to replace them and
(iii) the demands of the particular period. Each period
is affected to a different extent and priorities are strong
functions of the layout of demands. High priorities for
maintenance options relate to minor alterations in the
operation of the utility network. Conceptual analysis
(Strouvalis et al. (2000)), based on the Hardware Com-
posites, provides knowledge and insights of the space
and prioritises maintenance options.

In addition to conceptual preprocessing, priorities are
established computationally as well for the sake of
automation. Associated with each period t�T are lower
bounds corresponding to the (lowest) operating cost
(objective function) that employs all units u�U. Let the
set of lower bounds, Costoper={cTt

}, over all periods n
of the time horizon be:

Costoper={cTt
�t=1, …, n} (3)

For an idle u in period k a penalty p(u, Tk) is
assigned calculated by shutting down exactly u and
evaluating the new objective value, CuTk

. The penalty is
given by:

p(u, Tk)= (CuTk
−cTk

) (4)

Let OSu
pen be the ordered set of penalties in ascending

order:

OSu
pen={(CuTt

−cTt
)�u�U, t�T} (5)

Let OSu
per define the prioritised periods for u from the

penalty sequence in OSu
pen:

OSu
per={Tu

i �i=1, …, n} (6)

where:

Tu
1=Tt(CuTt

−cTt
)=min

t�T
OSu

pen (7)

Period Tu
1 has the highest priority, followed in OSu

per

by periods of decreasing priority. The periods for each
u in OSu

per are alternatively represented as Tu
k(u); Tu

1

corresponds to k(u)=1, Tu
2 to k(u)=2, etc.

Priorities over units are developed by calculating
arithmetic averages Pu

aver over the first N(u) entries of
the OSu

pen. N(u) is defined by the following heuristic:
Let:

a=
NT

A
(8)

(non-integer values are rounded to previous integer,
with a�1))

b(u)=number of periods in OSu
per (9)

N(u)=min{a, b(u)} (10)

A is the weight parameter associated with the length of
operating horizon.

The first N(u) penalties of OSu
pen are used to provide

the arithmetic average Pu
aver:

Pu
aver=

1
N(u)

�
N(u)

n=1

p(u, Tu
n) (11)

Penalties Pu
aver for units u sorted in descending order

provide ordered set OSU :

OSU={ui :Pui

aver�Puj

aver, �j� i } (12)

Let us represent the integer solution space by a
matrix with rows SMRi that correspond to units and
columns SMCj that relate to periods. The elements of
the matrix are binary variables allocating maintenance
periods. The prioritisation of periods and units (OSu

per

and OSU) defines the sequences SMRi over the columns
and rows, respectively. The Solver Matrix of the solu-
tion space is thus obtained by:

SMRi=OSuj

per:rank(OSU, uj)= i (13)

Rows follow the sequence of units in OSU with
periods ordered according to OSu

per per row.

3.2. Tuning of the sol�er

3.2.1. Customised branching
Established priorities for periods and units encom-

pass the knowledge of the particular utility network
and variation of demands. Let us consider as Candidate
List (CL) the running list of candidates for enumera-
tion. The list includes nodes �= (Tu 1

k(u1), Tu 2

k(u2), …, Tun

k(un))
that define specific subproblems (combination of binary
variables assigning shut-down of units). Period Tu 1

k(u1)

corresponds to the maintenance of the first unit of
OSU [Yu 1

Tu 1

k(u1)=0], Tu 2

k(u2) is the maintenance period of
u2[Yu 2

Tu 2

k(u2)=0], etc. If a node does not involve a
decision for the maintenance of a unit, symbol (X)
defines the corresponding relaxation. In the customised
solver (X) represents the exclusion of the maintenance
requirements (constraints) of u at the specific enumer-
ated node. Parent node �o= (X, X, …, X) represents the
relaxed subproblem where no unit maintenance is as-
signed to any period. Node (Tu 1

k(u1), Tu 2

k(u2), X, …, X) rep-
resents the relaxed subproblem where the first two units
in priority are allocated to maintenance periods with
the rest assigned to no period. The bound value of node
� is represented by B(�).

Assume node �= (Tu 1

k(u1), Tu 2

k(u2), …, Tum

k(um), X, …, X)
with the units in priority list OSU up to m switched off
in periods Tu 1

k(u1), Tu 2

k(u2), …, Tum

k(um), respectively.
� If Tu 1

k(u1)�Tu 2

k(u2)�…�Tum

k(um), node � is called inde-
pendent. An independent node includes independent
periods.

� If at least two out of periods Tu 1

k(u1), Tu 2

k(u2), …, Tum

k(um)

are identical, node � is called dependent. The identi-
cal periods are called dependent periods.

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630622

� If node � is infeasible, it is classified as dependent
with infinite bound.
Based on the properties of dependent and indepen-

dent nodes, bounds are determined by penalty values
p(un, Tun

k(un)) according to the following Lemma.

Lemma. Let a parent node:

�= (Tu 1

k(u1), Tu 2

k(u2), …, Tum

k(um), X, …, X)

and a child node:

� �= (Tu 1

k(u1), Tu 2

k(u2), …, Tum

k(um), Tun

k(un), X, …, X)

(i) if � � is independent then

B(� �)=B(�)+p(un, Tun

k(un)) (14)

(ii) if � � is dependent then

B(� �)�B(�)+p(un, Tun

k(un)) (15)

If node � is terminal:

B(�)=B(�0)+ �
UM

i=1

p(ui, Tui

k(ui)) (� independent) (16)

B(�)�B(�0)+ �
UM

i=1

p(ui, Tui

k(ui)) (� dependent) (17)

where UM is the total number of units subject to mainte-
nance and �0= (X, X, …, X).

Branching of nodes is handled by two criteria: the
Branching Variable Selection [BVSC] and Candidate
Problem Selection Criterion [CPSC]. The scope of
[BVSC] is to define the membership of CL and the
ordering of the subproblems in it. The [CPSC] is re-
sponsible for executing the enumeration of the next
node from the ones included in CL.

3.2.1.1. Branching �ariable selection criterion [BVSC].
The [BVSC] determines (i) the membership in the CL
and (ii) the ordering of nodes in CL. This criterion uses
sets OSU and OSu

per.

3.2.1.2. Candidate problem-node selection criterion
[CPSC]. The Candidate Problem Selection Criterion
[CPSC] has the task to select the next node for branch-
ing out of the CL of nodes. The criterion adopts a
Depth-First strategy with backtracking; the Last-In-
First-Out (LIFO) selects a child from parent node,
whereby, the last added to CL is the first one to select.
When a child node is pruned, backtracking of the
parent node identifies other child nodes not yet enumer-
ated. The (LIFO) criterion is chosen on the merits of
requiring less candidate storage and calculation restarts
than the Best-Bound alternative, as Parker and Rardin
(1988) mention. The (LIFO) strategy implemented in a

standard B&B, however, involves the solution of
greater numbers of candidate subproblems. The cus-
tomised pruning and bounding eliminate a significant
portion of the explicitly visited nodes and overcome this
drawback.

3.2.2. Customised pruning
Standard pruning disregards nodes with higher

bounds (Fig. 1(a)). The proposed enhanced pruning
consists of two additional criteria: (i) Mark and (ii)
Delete Criterion (Fig. 1(b)). The first ‘marks’ subprob-
lems in relation to dependent nodes, while the second
eliminates from CL the qualified for pruning nodes.

Enhanced pruning exploits the properties of depen-
dent and independent nodes. The methodology makes
use of sets OSu

per to select combinations and exclude
redundant enumerations; nodes that follow independent
nodes are pruned. For dependent nodes further branch-
ing is required.

3.2.2.1. Mark criterion [MC]. The Mark Criterion [MC]
imposes the enumeration of nodes due to conflicts in
priorities. [MC] applies on any node � retrieved from
the CL. For a general dependent node �=
(Tu 1

k(u1), …, Tun

k(un), X, …, X), where periods Tu 1

k(u1)�
Tun

k(un), [MC] marks the nodes �1= (Tu 1

k(u1)+1, X, …, X),
and �2= (Tu 1

k(u1), …, Tun

k(un)+1, X, …, X) for enumeration.
The number of marked nodes equals the number of
dependent periods present in the dependent node. The
same procedure is applied to units and periods of
infeasible nodes.

3.2.2.2. Delete criterion [DC]. The Delete Criterion is
applied on terminal or pruned nodes and it removes
from CL unmarked nodes. [DC] eliminates nodes start-
ing from the end of the CL up to the point a marked
node is found. The elimination then halts and enumera-
tion of marked nodes is enforced. If no marked node is
present [DC] eliminates the entire list.

3.2.2.3. Theorems of customised pruning. Nodes � �
qualified for enhanced pruning are defined by Theorem
1 and Theorem 2. The first defines pruned subproblems
associated to independent nodes while the second to
dependent ones.

Theorem 1. Let a terminal independent node:

�1= (Tu 1

k(u1), Tu 2

k(u2), …, Tun

k(un))

or a pruned independent node:

�2= (Tu 1

k(u1), Tu 2

k(u2), …, Tun

k(un), X, …, X)

For e�ery node:

� �1= (Tu 1

k�(u1), Tu 2

k�(u2), …, Tun

k�(un))

or

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630 623

� �2= (Tu 1

k�(u1), Tu 2

k�(u2), …, Tun

k�(un), X, …, X)

with k �(ui)�k(ui), �i�{1, …, n}it holds:

B(�1)�B(� �1) and B(�2)�B(� �2) (18)

Theorem 2. Let Tuk

k(uk)�Tuj

k(uj) on a terminal dependent
node:

�1= (Tu 1

k(u1), Tu 2

k(u2), …, Tuk

k(uk), …, Tuj

k(uj), …, Tun

k(un))

or a pruned dependent node:

�2= (Tu 1

k(u1), Tu 2

k(u2), …, Tuk

k(uk), …, Tuj

k(uj), X, …, X)

For e�ery node:

� �1= (Tu 1

k�(u1), Tu 2

k�(u2), …, Tuk

k(uk), …, Tuj

k(uj), …, Tun

k�(un))

or

� �2= (Tu 1

k�(u1), Tu 2

k�(u2), …, Tuk

k(uk), …, Tuj

k(uj), X, …, X)

with k �(ui)�k(ui), �i�{1, …, n}it holds:

B(�1)�B(� �1) and B(�2)�B(� �2) (19)

Proofs of Theorem 1 and Theorem 2 are presented in
Appendix B.

3.2.3. Customised bounding
The accelerated algorithm bounds nodes by capitalis-

ing on information of the Preprocessing Stage. Rather
than calling the LP solver in every node for estimation
of bounds (by fixing branched variables to integer
values and relaxing the remaining ones), a more refined
policy of solving LP’s is adopted. Independent node
combinations relate to decoupled maintenance (mainte-
nance of units in non-identical periods). These nodes
are appropriate for having their bounds defined by
already available values. Nodes, on the contrary, asso-
ciated to coupled combinations need separate bounding
and LP solution. As such the intelligent and restrained
use of the LP solver reduces the resources spent on
bounding.

The approach includes:
1. Selective processing of nodes,
2. Selective processing of constraints.

3.2.3.1. Selecti�e processing of nodes. Customised
bounding applies only to independent nodes. In this
case the solution of separate LP’s to develop bounds
becomes redundant. Indeed, bounding only requires
updates of bounds through straightforward calcula-
tions. The approach makes use of the penalty values
p(ui, Tui

k(ui)) to define the bound increase during branch-
ing. For dependent nodes, bounds follow conventional

procedures. These nodes are bounded using the LP
solver.

Overall, bounding makes a restricted use of the LP
solver. The tightness of bounds is though relaxed, be-
cause, some of the maintenance constraints are disre-
garded; i.e. for the bound of �1= (T1, X), maintenance
constraints of the second unit are not considered. As
the remaining (relaxed) maintenance constraints are not
taken under consideration less tight lower bounds are
obtained.

3.2.3.2. Selecti�e processing of constraints. Development
of customised bounds is a combined application of a
customised use of the LP solver and preprocessing
information. In that perspective every subproblem must
be examined disregarding all maintenance constraints
of child nodes. This allows for decoupling decisions-
constraints between parent and child nodes or equiva-
lently between periods. In that manner calculation of
bounds is permitted using values of the preprocessing.

The LP solver addresses subproblems where all bi-
nary variables are set to fixed values. Maintenance
constraints coupling periods are introduced at each
branching level. Nodes not already branched have the
corresponding unit maintenance constraints (and hence
binary variables) excluded from the bound calculation
of their parent nodes. This allows the examination of
decoupled scenarios using already available bounds.
Only coupled operations, where shut-down of units
affects more than one periods, are examined by sepa-
rate LP’s.

4. Implementation

The customised Branch-and-Bound solver is imple-
mented in C+ + and uses LINX (Fabian, 1992) as the
LP solver. LINX is a simplex-based routine collection to
facilitate special-purpose solvers and support the suc-
cessive use of LP’s in relevant sub-problems. The B&B
solver features options for the implemented level of
customisation. Options account for conventional B&B
pruning or pruning based on [DC] and [MC]. As usual,
priorities can alternatively be set by users.

5. Illustration

5.1. Problem description

The problem considers four steam turbines with the
efficiencies of Table A1 (Appendix A). The time hori-
zon consists of four time periods. Maintenance requires
one shut-down period per unit. Sets of data in power
and heat (A, B, C, D) are plotted on the Hardware
Composites of the network (Fig. 4).

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630624

Fig. 4. The utility network and the hardware composites for illustration.

Step I: Preprocessing of Solution Space
(i) Preliminary Reduction of Solution Space

The sets of maintenance periods are:

M(TU1)={A, B, C}

M(TU2)={A, B, C, D}

M(TU3)={A, B, C, D}

M(TU4)={A, B, C, D}

Operation of turbine TU1 is compulsory in D due
to the high power demand. The large capacity of
TU1 safeguards the feasible operation and ex-
cludes period D from the set of possible mainte-
nance periods M(TU1) of TU1.

(ii) Period prioritisation: Values cT t
are calculated for

each Tt and shown in Table 1:
Solution of 4×4=16 LP’s yields the operational
costs CuTt

of Table 2.Penalties p(u, Tt)=
(CuT t

−CTt
) are then defined (each considering

one unit off) as shown in Table 3:Sorted in as-
cending order penalties p(u, Tt) determine sets
OSu

pen:

OSTU1

pen ={4433.3, 6022.2, 6388.9}

OSTU2

pen ={0, 222.2, 888.9, 1333.3}

OSTU3

pen ={55.6, 83.3, 166.6, 222.2}

OSTU4

pen ={0, 0, 0, 0}
Next, associated periods Tt to penalties of OSu

pen

provide the priority lists OSu
per:

OSTU1

per ={A, C, B}

OSTU2

per ={A, C, B, D}

OSTU3

per ={B, A, D, C}

OSTU4

per ={D, C, B, A}Table 1
Minimum operational cost cT t

per Tt for illustration

Period

A B C D

26 666.7cT t
($/period) 21 666.7 21 111.1 27 777.8

Table 2
Operational costs ($/period) of maintenance scenarios for illustration

Period

DA CB

InfeasibleTU1 26 100 27 500 33 800
21 666.7 22 000TU2 28 000 28 000

26 833.328 0002166.7TU3 21 750
21 666.7 21 111.1 27 777.8 26 666.7TU4

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630 625

Table 3
Penalties ($/period) of maintenance scenarios for illustration

Period

B CA D

TU1 4433.3 6388.9 6022.2 –
TU2 888.90 222.2 1333.3

55.6 222.283.3 166.6TU3

0TU4 0 0 0

less differently stated (dependent nodes), all lower
bounds are calculated by adding to the lower bound of
the parent node the penalty for shutting down a unit
(associated to the branching level) in a specific period.

The B&B tree and the branching of nodes are pre-
sented in Fig. 5. Node numbers reflect the branching
sequence. Information is also given for bound and
penalty values.

The optimum maintenance vector is:

(TU1, TU3, TU2, TU4)= (A, B, C, D) (21)

associating units and maintenance periods. While
branching and pruning, the LP solver was called once,
in dependent �3, to provide a lower bound. All other
enumerated nodes are independent and as such penalty
values p(u, Tt), available from the Preprocessing Stage,
were used for bounding.

6. Example problem

The utility system of Fig. 6(a) includes nine units
(steam turbines T1–T5, gas turbine GT and boilers
B1–B3) with efficiencies and capacities presented in
Table A2. The operating horizon consists of 24 equal-
length periods. Each period relates to a pair of constant
demands in power and process steam as shown in Table
A3. Preventive maintenance imposes the shut-down of
all units for one period. Optimal scheduling is expected
to meet all demands and maintenance needs in the most
economic way. Model properties are presented in Table
4.

The solution of the problem is addressed in two
steps: I) preprocessing of the solution space and II)
B&B customisation.

6.1. Step I

The solution space is analysed to reveal feasible and
prioritised options. Preprocessing is applied in concep-
tual and computational terms. The location of demands
on the solution space (Fig. 7) in relevance to hardware
limits identifies infeasible scenarios, which are excluded
from optimisation. LP’s are solved to calculate
penalties associated with the shut-down of units in
feasible periods. Penalties in increasing sequence define
priority lists OSu

per. Penalties are also used for the unit
prioritisation list OSU. Ordered sets OSu

per and OSU

formulate the Solver Matrix (Fig. 8) which encom-
passes the prioritised solution space. The first column
includes all units subject to maintenance arranged ac-
cording to OSU (upper elements—GT, T2, T1, T3,…—
relate to higher priority units). Each element-unit of the
first column associates to the corresponding period
priority list OSu

per defining the rows of the matrix.

Especially for OSTU4
per the priorities between zero-

penalty periods are defined by insights of the
problem (period D has higher priority over the
rest since it is the least preferable for the mainte-
nance of units TU1, TU2 and TU3).

(iii) Unit Prioritisation: The number of periods to
consider for calculations of Pu

aver uses the heuristic
rule of Eqs. (8)– (11):

N(TU1)=min
�4

4
, 3
�

=1

N(TU2)=min
�4

4
, 4
�

=1

N(TU3)=min
�4

4
, 4
�

=1

N(TU4)=min
�4

4
, 4
�

=1

(1 period is chosen per unit).
Penalties are applied for the first element of

OSu
pen: TU1 is assigned to PTU1

aver =4433.3, followed
by TU3 with PTU3

aver =83.3. TU2 and TU4 have zero
first-period penalties. The priority list (first itera-
tion) is OSU={TU1, TU3, TU2–TU4}, where
TU2–TU4 represents units with identical Pu

aver.
An additional iteration considers the second ele-
ments of OSTU2

pen and OSTU4
pen . TU3 is now assigned

to value (888.9+0)/2 and TU4 to (0+0)/2. The
unit priority list is finally defined as:

OSU={TU1, TU3, TU2, TU4} (20)

From priority lists OSu
per and OSU the Solver

Matrix is formulated:

�
�
�
�
�

TU1 A C B
TU3 B A D C
TU2 A C B D
TU4 D C B A

�
�
�
�
�

Step II: Application of the B&B solver:
The application of the customised solver selects can-

didate problems and variables for branching, marks
nodes for enumeration and deletes inferior nodes. Un-

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630626

Fig. 5. The development of the B&B tree for illustration.

Fig. 6. (a) Utility network and (b) sets of demands in power and heat for example problem.

6.2. Step II

The customised B&B searches the solution space
according to the structure of the Solver Matrix. The
branching of the binary tree initiates from the first
elements of the upper rows and proceeds to deeper
options only if specific properties hold. The enhanced
pruning effectively disregards inferior parts of the tree
from enumeration. The result is acceleration of the
B&B algorithm compared with the solution of the same

Table 4
Model size for example problem

Binary ConstraintsContinuous Non-zero
variables elementsvariables

754 2257216457

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630 627

Fig. 7. Hardware composites depict the optimum solution space.

model by OSL implemented in GAMS (Brooke,
Kendrick & Meeraus, 1992) as shown in Table 5.

OSL invested significant computational effort in
searching the solution space. Even at the iteration limit
of 150 000 optimality had not been reached due to the
suboptimal flat profile the solver was trapped in. Alter-
natively, the customised B&B performed better in all
aspects and identified the optimal schedule after solving
(217+76) LP’s during Preprocessing and Branching-
and-Bounding, respectively. Optimal maintenance is
performed according to vector:

(GT, T2, T1, T3, T5, B1, B2, B3, T4)

= (5, 15, 6, 4, 18, 4, 1, 19, 10) (22)

7. Conclusions

This work reports on the acceleration observed by
customising the solution search to the special structure
of problems. While the basic notions of the Branch-
and-Bound, a widely applied algorithm for solving
MILP’s, remain the same over the many contributions,
computational experience has shown that general-pur-
pose solvers can not capture special problem properties
and are doomed to inferior performances. The design
of inexpensive customised algorithms enhances compu-

tational efficiency and proves the superiority of such
solvers over expensive commercial packages. It should
be noted that the proposed methodology is generic

Fig. 8. The solver matrix encompasses the B&B customisation.

Table 5
Computational results for example problem

Customised OSL(GAMS)
B&B

188 50,402Nodes
150 000Iterations (Interrupted)

76Solved LP’s 50 404
13393.2CPU(s)-333 MHz

Objective-($/oper. horizon) 1 021 133.4 1 022 899.6
(Relaxed objective) (1 005 439.7)(1 004 690)

Preprocessing Stage, 217 LP’s—26.2 CPU(s).

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630628

within the context of the application, namely for ev-
ery problem within the specification in the outline
and problem description. The proposed approach car-
ries intelligence to fully automate the customisation of
the optimisation solver. Solution search engines with
built-in intelligence and search technology perform
better orders of magnitude. The ability to apply key
B&B functions (branching, pruning) tailored to par-
ticular solution spaces, speeds-up convergence and re-
duces computational costs.

Appendix A

Boiler and Gas turbine models:
The cost of fuel burnt in a boiler (CFb), for pro-

ducing steam flowrate MSb is:

CFb=BfMSb (A.1)

Slope (Bf) represents the incremental boiler efficiency.
The gas turbine is modelled by two interrelated lin-

ear models that describe the relationship between the
steam (MSHRSG) in the Heat Recovery Steam Genera-
tor and the power output of the turbine (Eg):

MSHRSG=GstEg (A.2)

and a relation between the flowrate of the fuel burnt
in the combustion chamber and the steam (MSHRSG)
raised in the HRSG:

CFg=GfMSHRSG (A.3)

Gst denotes the efficiency of raising HRSG steam and
Gf the turbine efficiency.

Problem Data:
Table A1: Operational parameters of turbines and

boilers for illustration.

mtu [t/(hkW)] Bf [$h/(t(timegtu [t/(hkW)] Turbine
horizon)] capacity:

power (kW)
mtu1=0.0125 Bfb=2000gtu1=0.05 Turbine 3:

400
mtu2=0.0166 Turbine 4:gtu2=0.0833

450
mtu4=0.03 gtu3=0.075

Table A2: Operational parameters of turbines and
boilers for example problem.
mtu [t/(hkW)] Bf [$h/(t(timegtu [t/(hkW)] Boiler

horizon)] capacity
[t/h]

mtu1=0.0333 Bfb1=523.3gtu1=0.15 Boiler 1: 40
Bfb2=534.16mtu2=0.025 Boiler 2: 40gtu2=0.3

Bfb3=555gtu3=0.25 Boiler 3: 50mtu3=0.02857
mtu5=0.05 Gf=562.5gtu5=0.1667

Gst=0.042857 (t/hkW).
Table A3: Sets of demands in power and heat for

example problem.

Demands
Power (kW) Process Steam [t/h]

Periods
4917901
552 1700
6215723

15354 52
4515205

16826 50
587 1765
6017908
709 1840
66191010

185011 48
55178012

171013 68
7914 1630
77161015
6816 1690
61180017

190018 46
52200319

203020 49
5621 1960
68186022
5623 1820
51180024

Appendix B

Proof of Theorem 1:�1 is independent node �

B(�1)=B(�0)+p(u1, Tu 1

k(u1))+p(u2, Tu 2

k(u2))+…

+p(un, Tun

k(un)) (B.1)
� �1 can be either independent node �

B(� �1)=B(�0)+p(u1, Tu 1

k�(u1))+p(u2, Tu 2

k�(u2))+…

+p(un, Tun

k�(un)) (B.2)

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630 629

or dependent node �

B(� �1)�B(�0)+p(u1, Tu 1

k�(u1))+p(u2, Tu 2

k�(u2))+…

+p(un, Tun

k�(un)) (B.3)

All periods T present in � �1 are of lower or equal
priority than the corresponding ones of �1. Due to
priority sequence (k �(ui)�k(ui)), penalties:

p(u1, Tu 1

k�(u1))�p(u1, Tu 1

k(u1)), p(u2, Tu 2

k�(u2))

�p(u2, Tu 2

k(u2)), …, p(un, Tun

k�(un))

�p(un, Tun

k(un))

The lowest possible value for B(� �1) (� �1 independent)
is always higher than B(�1):

B(�1)�B(� �1) (B.4)

The same proof applies for the case of �2. The lower
bound B(�2) is given by Eq. (B.1), since the remaining
non-branched levels (X) do not contribute penalty
terms. It is similarly proven that:

B(�2)�B(� �2) (B.5)

Proof of Theorem 2
Node �1 is dependent

(Tuk

k(uk)�Tuj

k(uj)) � B(�1)

�B(�0)+p(u1, Tu 1

k(u1))+p(u2, Tu 2

k(u2))+…

+p(uk, Tuk

k(uk))+…+p(uj, Tuj

k(uj))+…

+p(un, Tun

k(un)) (B.6)

� B(�1)=B(�0)+p(u1, Tu 1

k(uj))+p(u2, Tu 2

k(u2))+…

+pag((uk, uj), Tuk

k(uk))+…+p(un, Tun

k(un))
(B.7)

where pag((uk, uj), Tuk

k(uk) is the aggregated penalty when
more than one units are shut down in the same period.

Node � �1 is dependent

(Tuk

k(uk)�Tuj

k(uj)) � B(� �1)

�B(�0)+p(u1, Tu 1

k�(u1))+p(u2, Tu 2

k�(u2))+…

+p(uk, Tuk

k(uk))+…+p(uj, Tuj

k(uj))+…

+p(un, Tun

k�(un)) (B.8)
� B(� �1)=B(�0)+p(u1, Tu 1

k�(u1))+p(u2, Tu 2

k�(u2))+…

+pag((uk, uj), Tuk

k(uk))+…+p(un, Tun

k�(un))
(B.9)

All periods of node � �1 are of lower or equal priority
than the corresponding ones of �1 (k �(ui)�k(ui)) with
the exception of dependent periods Tuk

k(uk)�Tuj

k(uj). As

such, penalties p(u1, Tu 1

k�(u1))�p(u1, Tu 1

k(u1)), p(u2, Tu 2

k�(u2))
�p(u2, Tu 2

k(u2)), …, p(un, Tun

k�(un))�p(un, Tun

k(un)), while

(pag((uk, uj), Tuk

k(uk)) is the same on both nodes. Compar-
ing the two bounds becomes evident that:

B(�1)�B(� �1) (B.10)

Similarly for a pruned dependent node �2 where the
non-branched levels the B&B tree (X) do not contribute
penalty terms it is proven that:

B(�2)�B(� �2) (B.11)

References

Brooke, A., Kendrick, D., & Meeraus, A. (1992). GAMS. A user
guide, Release 2.25. The Scientific Press.

Church, E. F. (1950). Steam Turbines (third ed.). New York:
McGraw-Hill.

Dakin, R. J. (1965). A tree search algorithm for MILP problems.
Computational Journal, 8, 250.

Fabian, C.I. (1992). LINX: An interactive linear programming li-
brary.

Floudas, C. A. (1995). Nonlinear and Mixed-Integer Optimisation,
Fundamentals and Applications. Oxford University Press.

Floudas, C.A. and Grossmann, I.E. (1995). Algorithmic approaches
to process synthesis: logic and global optimisation, American
Institute of Chemical Engineering Symposium Series 304,
Fourth International Conference on Foundations of Computer-
Aided Process Design, Vol. 91, 198.

Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. (1992).
Graph-theoretic approach to process synthesis: Axioms and the-
orems. Chemical Engineering Science, 47(8), 1973.

Friedler, F., Varga, J. B., & Fan, L. T. (1995). Decision-Mapping:
a tool for consistent and complete decisions in process synthe-
sis. Chemical Engineering Science, 50(11), 1755.

Geoffrion, A. M., & Marsten, R. E. (1972). Integer programming
algorithms: a framework and state-of-the-art survey. Manage-
ment Science, 18(9), 465.

Hooker, J. N., Yan, H., Grossmann, I. E., & Raman, R. (1994).
Logic cuts for processing networks with fixed charges. Comput-
ers Operations Research, 21(3), 265.

Kearton, W.J. Pitman, (1958). Steam turbine theory and practice,
7th ed., London: Pitman.

Lee, S., & Grossmann, I. E. (2000). New algorithms for nonlinear
generalised disjunctive programming. Computers and Chemical
Engineering, 24, 2125.

Mavromatis, S. P., & Kokossis, A. C. (1998a). A logic based
model for the analysis and optimisation of steam turbine net-
works. Computers in Industry, 36(3), 165.

Mavromatis, S. P., & Kokossis, A. C. (1998b). Hardware Com-
posites: A new conceptual tool for the analysis and optimisa-
tion of steam turbine networks in chemical process industries.
Part I: principles and construction procedure. Chemical Engi-
neering Science, 53(7), 1405.

Mavromatis, S. P., & Kokossis, A. C. (1998c). Hardware Com-
posites: a new conceptual tool for the analysis and optimisation
of steam turbine networks in chemical process industries. Part
II: application to operation and design. Chemical Engineering
Science, 53(7), 1435.

Parker, G., & Rardin, R. (1988). Discrete Optimization. Academic
Press.

Raman, R., & Grossmann, I. E. (1992). Integration of logic and
heuristic knowledge in MINLP optimisation for process synthe-
sis. Computers and Chemical Engineering, 16(3), 155.

A.M. Strou�alis et al. / Computers and Chemical Engineering 26 (2002) 617–630630

Raman, R., & Grossmann, I. E. (1993). Symbolic Integration of logic
in Mixed-Integer Linear Programming Techniques for process
synthesis. Computers and Chemical Engineering, 17(9), 909.

Raman, R., & Grossmann, I. E. (1994). Modelling and computa-
tional techniques for logic based integer programming. Computers
and Chemical Engineering, 18(7), 563.

Strouvalis, A. M., Mavromatis, S. P., & Kokossis, A. C. (1998).
Conceptual optimisation of utility systems using hardware and
comprehensive Hardware Composites. Computers and Chemical
Engineering, 22(Suppl.), 175.

Strouvalis, A. M., Heckl, I., Friedler, F., & Kokossis, A. C. (2000).

Customised solvers for the Operational Planning and Scheduling
of Utility Systems. Computers and Chemical Engineering, 24, 487.

Turkay, M., & Grossmann, I. E. (1996). Logic-based MINLP al-
gorithms for the optimal synthesis of process networks. Comput-
ers and Chemical Engineering, 20(8), 959.

Vecchiety, A., & Grossmann, I. E. (2000). Modeling issues and
implementation of language for disjunctive programming. Com-
puters and Chemical Engineering, 24, 2143.

Vecchietti, A., & Grossmann, I. E. (1999). LOGMIP: a disjunctive
0-1 non-linear optimizer for process system models. Computers
and Chemical Engineering, 23, 555.

	An accelerated Branch-and-Bound algorithm for assignment problems of utility systems
	Introduction
	Assignment problems and optimisation challenges
	Development of the Branch-and-Bound algorithm
	Solution space preprocessing
	Conceptual tools
	Assignment of priorities

	Tuning of the solver
	Customised branching
	Branching variable selection criterion [BVSC]
	Candidate problem-node selection criterion [CPSC]

	Customised pruning
	Mark criterion [MC]
	Delete criterion [DC]
	Theorems of customised pruning

	Customised bounding
	Selective processing of nodes
	Selective processing of constraints

	Implementation
	Illustration
	Problem description

	Example problem
	Step I
	Step II

	Conclusions
	Uncited references
	Appendix A
	Appendix B
	References

