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ABSTRACT

Analysis of the combinatorial properties of process synthesis has been carried out in the present
work. Such analysis has given rise to some efficient combinatorial algorithms. Algorithm MSG
generates the maximal structure (super-structure) of a process synthesis problem; it can also be
the basic algorithm in generating a mathematical programming model for this problem.
Algorithm MSG is effective in synthesizing a large industrial process since its complexity
grows merely polynomially with the size of the synthesized process. Another algorithm,
algorithm SSG, generates the set of feasible process structures from the maximal structure; it
leads to additional combinatorial algorithms of process synthesis including those for
decomposition and for accelerating branch and bound search. These algorithms have also
proved themselves to be efficient in solving large industrial synthesis problems.

KEYWORDS

Process synthesis; structure generation; maximal structure; combinatorial algorithm.

INTRODUCTION

The mathematical programming approach to process synthesis has two major steps, the
generation of the mathematical model and the solution of this model. Nevertheless, the
available methods for the first step are restricted to limited classes of homogeneous processes,
and those for the second step are capable of solving only the models of relatively small
synthesis problems. A homogeneous process comprises operating units of the same type, e.g.,
heat exchangers. Thus, the process synthesis methods resorting to mathematical programming
are not sufficiently mature for industrial application.

Both steps of process synthesis have combinatorial aspects. In the first step, the connections of
plausible operating units, i.e., some graph representation of the mathematical model, should be
postulated, while in the second step, the model to be solved contains integer (combinatorial)
variables. Process synthesis primarily is a combinatorial problem because the complexity of
the synthesis is the consequence of its combinatorial nature, and the combinatorial variables
affect the objective (cost) function more profoundly than the continuous variables of the model.
Since, in practice, process synthesis cannot be separated into combinatorial and continuous
parts, it should be solved by taking into account both parts simultaneously. The required
combinatorial tools and algorithms for this purpose, however, have been unavailable so far.
Process synthesis is defined here as the initial step of process design where the total flowsheet
is to be generated (Siirola and Rudd, 1971; Mahalec and Motard, 1977; Douglas, 1988).
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MATHEMATICAL FOUNDATION

Process Graphs

Simple graphs adopted in analyzing process systems are unsuitable for representing the
structures of processes in their syntheses since the uniqueness of these graphs cannot be
ascertained. For example, it has been found that a simple graph may belong to different
processes (Friedler et al., 1992). Hence, a special directed bipartite graph, termed process graph
or P-graph in short, has been introduced to alleviate this difficulty.

Let M be a finite set, and let set O satisfy the constraint
0 C p(M) x (M), ¢Y)

where #(.) is the power set and x is the Cartesian product. Pair (M, O) is defined to be a process
graph or P-graph; the set of vertices of this graph is M U O, and the set of arcs is a where

a={(X,Y)| Y=(o, B)EO0 and XEa } U { (Y,X)| Y=(a, B)EO and XEP }. 2
Since M N O = & and no arc exists between two elements of M or those of O, a process graph
is bipartite. The union and intersection of the two P-graphs, (m1, 01) and (mz, 02), are
defined by (ms, 0s) and (m«, 04), respectively, where (ms, 0s)=(m:1U m2, 01U 02) and
(mq, 04)=(m1 N m2, 01N 02). P-graph (m1, 01) is defined to be a subgraph of P-graph (mz2,
02), 1., (m1, 01)C (m2,02),if m1C m2 and 01 C 02.

If arc (X, Y) € a, then X and Y are said to be the initial and terminal endpoints, respectively, of
this arc. If (a, B) is an element of O, then set o is the input-set of (a, B), while set B is its
output-set. The input-set and output-set are subsets of M. An arc is defined to be incident into
or out of a vertex if this vertex is the terminal or initial endpoint of this arc, respectively. The
indegree, d’, of vertex X is defined to be the number of the elements of the set of arcs incident
into vertex X.

Process Structures

Let M be a given set of objects, usually material species or materials, that are transformed in the
process under consideration. M can be expressed as a set of names or vectors of characteristics
of these objects (materials). Transformation between two subsets of M occurs in an operating
unit of the process, which is linked to other operating units of the process through the elements
of these two subsets of M. If O is the set of operating units, it satisfies constraint (1). If (c, ) is
an operating unit, then set a denotes its inputs while set § denotes its outputs. The structure of a
process, given by sets M and O, is defined to be P-graph (M, O). The union and intersection
operations of process structures are defined by their P-graph operations.

Example 1

Suppose that set M1 of materials and set O of operating units are given by M1={A, B, C, D,
E, F, G, H, L J}, and O:1={ ({B}, {A, E}), ({C}, {A, I}), ({D, E}, {B}), ({E, F}, {B}), ({F,
G}, {C}), ({H}, {E}), ({1, 3}, {G}) }. It is not difficult to validate that sets M1 and O satisfy
constraint (1), i.e., (M1, O1) is a P-graph, as depicted in Fig. 1.

Decision Mappings

To generate a certain class of substructures of a process structure, e.g., a set of feasible process
structures, a special technique, decision mapping, is required to organize the system of
decisions. Decision mapping is a special mathematical tool to render our decisions consistent
and complete in dealing with complex decision problems, such as those encountered in process
synthesis. The most essential definitions and theorems of decision-mappings have been listed
here; further details and the proofs of theorems will be given elsewhere ( Friedler et al., 1991c¢).

Let us suppose that for finite sets M and O, OC#(M)x#(M) holds; for XEM, let us define set
o(X) by o(X)={ (a, B) | (o, B)EO and XEB }.

Definition. Let us suppose that set m is a subset of M. For XEm, let 8(X) be a subset of o(X);
then, 8[m]={ (X, G(X))) XEm } is defined to be a decision-mapping on its domainm.
Definition. The complement of decision-mapping 8[m] is defined by d*[m]={ (X, Y)| XE€m
and Y=0o(X)\&(X) }. Thus, for XEm, 6*(X)=0(X)\6(Xg.
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Definition. Decision-mapping 8[m] is said to be consistent if |m|sl, or
BX)NAY))Ud*(X)Nd*(Y))=0(X)No(Y) for any X, YEm.
Definition. m’ is said to be an active domain of decision mapping 6[m], if m’C m,
U &X)=_U 8X), and _ U *X)= _U 6%X). 3-4
XEm’B( ) XEm( ) Xem’ X) XEm X) (-4
Note that m is always an active domain of decision-mapping d[m], and a decision mapping can
have multiple active domains.

Decision-mapping of a P-graph. Let P-graph (m, o) be a subgraph of P-graph (M, O).
Definition. m’ is an active set of P-graph (m, o), if m’Cm and PNm’=J for any (a, B)Eo.
Definition. Let m’ be an active set of P-graph (m, o0); then, d[m’] is defined to be a
decision-mapping of P-graph (m, o), if

8[m’]={(X, Y)| XEm’ and Y= {(a, B)| (c, B) €0 and XEP}}. ©)
Theorem. The decision-mappings of a P-graph are consistent.

P-graph of a decision-mapping. The definition of the P-graph of a decision-mapping is based on
the following theorem.
Theorem. Let 3[m’] be a consistent decision-mapping,

o=_U &X), and m= aUp) . 6-
xe& XX (@ %EO( ) (6-7)
Then, (m, o) is a P-graph, m’ is an active set of P-graph (m, o), and 8[m’] is a decision-mapping
of P-graph (m, o).

Definition. The P-graph of consistent decision-mapping d[m’] is defined to be (m, 0), where o
and m are determined by formulas (6) and (7).

[
2=
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T
[
A A
Fig. 1. P-graph (M1, O1). Fig. 2. P-graph representing

decision-mapping d2.

Example 1 Revisited

Let decision-mapping 81 be defined by 81[{A, B, E}]={ (A, {1}), (B, {3, 4}), (E, {6}) },
where the operating units are labelled as in Fig. 1. Obviously, this decision-mapping is not
consistent; therefore, it does not define a P-graph. However, decision-mapping 62[{A, B,
E}={ (A, {1}), (B, {3}), (E, {1, 6}) } is consistent and defines P-graph (M1’, O1”), where
Mi:’={ A, B,D,E, H}, and O:’={1, 3, 6 } (see Fig. 2.).

COMBINATORIAL PROPERTIES OF PROCESS STRUCTURES IN PROCESS
SYNTHESIS

Suppose that the sets of the products, P, the raw materials, R, and the operating units, O, define
synthesis problem (P, R, O). A set of axioms has been constructed to express the necessary and
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sufficient combinatorial properties to which a feasible process structure should conform

(Friedler et al., 1992). Structure (m, o) is such a feasible structure, i.e., solution-structure, of

synthesis problem (P, R, O) if it satisfies axioms (S1) through (S5) given below.

(Slg Every final product is represented in the graph, i.e., P C m;

(S2) A vertex of the M-type has no input if and only if it represents a raw material, i.e.,
Vx € m, d (x)=0 if and only if x ER;

(S3) Every vertex of the O-type represents an operating unit defined in this synthesis
problem, i.e., 0 € O;

(S4) Every vertex of the O-type has at least one path leading to a vertex of the M-type
representing a final product, i.e., V yo € o, 3 path [yo, y1], where y1 € P; and

(SS) If a vertex of the M-type belongs to the graph, it must be an input to or output from
at least one vertex of the O-type in the graph, i.e., V xEm, 5((1, B)Eo such that
xE(aUP).

The set of solution-structures is denoted by S(P, R, O). An interesting property of this set is that

it is closed under union.

The maximal structure, defined below, plays an important role in process synthesis.

Definition. The union of all solution-structures, u(P, R, O), is defined to be its maximal

structure, i.e.,
U o. 8)
o€S(P,R,0)

The maximal structure of P-graphs corresponds to the "super-structure" of simple directed
graphs; however, the former is mathematically defined rigorously, but the latter is not.
Moreover, since each solution-structure is a substructure of the maximal structure, a
solution-structure can be given by a decision-mapping of the maximal structure.

w(P,R,0) =

Table 1. Plausible Operating Units of Example 2.

No. Type Inputs Outputs
1. Feeder Al AS

2. Reactor A2, A3, A4 A9

3.  Reactor A3, A4, A6, All A10

4. Reactor A3, A4, AS Al2

5. Reactor A3, A4, AS Al3

6. Reactor A7, A8, Al14 Al6

7.  Reactor A8, A14, A18 Al6

8.  Separator A9, All A21, A22, A24
9.  Separator A10, Al1 A22, A24 A37
10. Separator Al2 A25, A26
11. Separator Al3 A25,A31
12. Dissolver Al5, Al6 A32

13. Reactor Al4, A17, Al18, A19, A20 A33

14. Reactor A6, A21 A3S

15. Washer A22, A23 A48

16. Washer AS, A24 A36

17. Separator AS, Al1, A25 A37, A38, A39
18. Separator All, A26 A40, A42
19. Reactor Al4, A27, A28, A29, A30 A4l

20. Separator All, A31 A40, A42
21. Centrifuge A32 Ad44, A4S
22. Washer A33,A34 Ad6

23. Separator A36 Al4, A48
24. Separator A38 Al4, A48
25. Filter A4l AS0, AS1
26. Washer Ad43, A44 AS3

27. Filter Ad6 ASS, AS6
28. Separator Ad7, A48 AS, A57
29. Separator A48, A49 AS, A58
30. Separator AS0 AS9, A60
31. Dryer AS1,AS54 A61

32. Dryer AS2, AS3 A61

33. Dryer AS54, ASS A61

34. Distillation AS9 A62, A63

35. Separator A60 A64, A6S
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Example 1 Revisited

Let P1={A} be the set of products, R1={D, F, H, I} be the set of raw materials; then, Fig. 2.
represents a solution-structure, and Fig. 1. shows the maximal structure of synthesis problem
(P1,R1, 01).

Example 2. Synthesis of an Industrial Process

The Folpet (N-(trichloromethylthio)phthalimide) process is synthesized in this example.

Although the synthesis of the total flowsheet has been carried out, only the combinatorial part
of the synthesis is discussed here. Experimental investigations have given rise to a set of
plausible operating units and a set of possible raw materials to produce a given product, A61,

i.e.,, P2={A61}. We have set M2= {A1l, A2, A3, ..., A64, A65} as the set of materials, and set
R2={A1, A2, A3, A4, A6, A7, A8, All, A15, A17 A18 A19, A20, A23, A27, A28 A29,

A30, A34, A43, A47, A49, A52, AS54} as the set of possible raw materials; O2 is the set of
plausible operating units listed in Table 1. P-graph (M2, Oz) is not the maximal structure of
synthesis problem (P2, Rz, O2). Since an operating unit, for example, operating unit # 14, does
not satisfy axiom (S4), it can not be an element of neither a solution-structure nor the maximal
structure. Without an algorithmic approach, it is very difficult to determine the maximal
structure of this example or any other example of similar size. The maximal structure of
Example 2 will be determined later by algorithm MSG.

ALGORITHMIC GENERATION OF THE MAXIMAL STRUCTURE

Algorithms given here have been written in Pidgin Algol. This high level language has been
introduced by Aho et al. (1974) for describing algorithms for publication and mathematical
examination.

Main Steps of Algorithm MSG

The algorithm for generating the maximal structure of synthesis problem (P, R, O) is presented

input: sets P, R, O;
comment: PEM, RCM, OCPM)xp (M), and PNR =
output: (m, o), the ‘maximal structure o synthesis problem (P, R,

begin
stl: O:=O\{(a,[3) | éa,.ﬁ)EO & BNR=D};

d;
O) if it exists ;

st2: M :=

a,
st3: r x|xEM\R&V(aB)EO x&B};
st4: whlle r is not empty do

begin

let X be any element of r;

-_{(aB) i Yapeo & xeal;
r 3 rU{y | 3(a,B)Eo suchthat yEB & V (1,0)E0, yEd D\ {x}
en

stS: if PZM then stop ; comment there is no maximal structure ;

p=P; m:=0;0:

st6: while p1s not empty do’
begin

X be any element of p;

é& ﬁgf(a,ﬁ)EO&xeﬁ};
pU( ( bJ)E a)\(RUm);

l

let
m:
o:
o:
p:

st7: ( Bkie

Fig. 3. Algorithm MSG.
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in Fig. 3. In this algorithm, statements st1 and st2 exclude operating units producing raw
materials that violates axiom (S2). In statement st3, set r is defined as the set of materials that
are not raw materials, but are consumed and never produced by any operating unit. In loop st4,
these materials are excluded from set M, and the concomitant operating units are excluded from
set O; the resulting P-graph (M, O) satisfies axiom (S2). Statement st5 examines if axiom (S1)
is satisfied by P-graph (M, O). If this condition is not satisfied, the maximal structure does not
exist. Otherwise, the maximal structure is constructed stepwisely by collecting the operating
units satisfying axioms (S3) and (S4). Set M of materials defined by statement st7 assures that
axiom (SS5) is satisfied by P-graph (M, O). It has been proved that algorithm MSG always
generates the maximal structure of the synthesis problem in a finite number of steps, if the
maximal structure exists (Friedler et al., 1991b).

Complexity Analysis of Algorithm MSG

It is often crucial to know the number of elementary steps required by a combinatorial
algorithm as a function of the size of the problem under consideration. For the best
combinatorial algorithms, this number can be bounded by a polynomial function. However, the
complexity of most combinatorial algorithms is higher than polvnomial, e.g., exponential, or
factorial (see, e.g., Hartmanis, 1989). The complexity of algorithm MSG has been proved to be
polynomial (Friedler et al., 1991b).

Example 2 Revisited

The maximal structure of this example determined by algorithm MSG is given in Fig. 4. Five
operating units in set Oz do not belong to the maximal structure. As a result, the number of
binary variables of the MINLP model of this example is reduced by five, thereby attaining the

minimum.
Al

1X ‘é‘%///l N
T ML

-J-lS 16 — 19 —21 ——22

Py

A3s A38 A% A as A4S
(1 ¢ [ p
AR A39 A4S
J 23 24 b 25 l— 26 — 27
A4 E aso/  [as a5z |asy ass k
b '

28 29

AS7 AS8 A6

Fig. 4. Maximal structure of Example 2 generated by Algorithm MSG.
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GENERATION OF THE SOLUTION-STRUCTURES

The axiom system containing axioms (S1) through (S5) defines the set of combinatorially
feasible process structures, i.e., the set of solution-structures. Although the size of this set is
usually excessively large to have its elements enumerated in practice, the availability of an
algorithm to generate the set is essential. Such an algorithm constitutes the major building block
for a mathematical programming approach to process synthesis, e.g., the accelerated branch and
bound method of process synthesis (Friedler et al., 1991a). The axiom system renders it
possible to determine whether a P-graph represents a combinatorially feasible process structure;
nevertheless, it is useless in directly generating the set of solution-structures. Thus, algorithm
SSG has been developed for this purpose. This algorithm is based on the mathematical study of
the axiom system and the solution-structures and is also based on the decision-mappings.

Algorithm SSG
Algorithm SSG, given in Fig. 5, is recursive because it invokes itself. This algorithm

input: P,R,M,o0(x) (xEM);

comment: P, R, o(x) belong to synthesis problem ( P, R, O ), where
PCM,RCM,PNR=T,0(x)={(,p) | (a,B)EO & xEP },0(x) = » xER,
8[m] is a decision-mapping on M ;

output: all solution-structures of synthesis problem (P, R, 0) ;

global variables: R, o(x) (xEM);

begin
if P=¢ then stop;
SSG(P, 3, D) ;

end

procedure SSG( p, m, 8[m] ):
in
if p = & then begin write 3[m] ; comment: 6[m] defines a solution-structure ; return end
let xEp;
C:=p (0(x))\ {I};
ForallcE C do

begin
if :yEm, cNEWM\X)=F & (c(x)\c)Nd(y)=J
then

gfr%ﬂ{x}(] = 38[m] U {(x,€)} ;
SSG( pU (a%)éca )\ (RUmU{x}), mU{x} , 3[mU{x}])

end
end
return
end

Fig. 5. Algorithm SSG.

determines the set of solution-structures as the decision-mappings of the maximal structure. In
the list of parameters for procedure SSG, p is the set of materials that have not been but should
be produced in the process partially defined by decision-mapping 8[m]. These parameters are
updated recursively until all possible consistent extensions of 8[m] are examined. It has been
proved that this algorithm generates each and every solution-structure exactly once, and it
generates solution-structures only.

Example 2 Revisited

Algorithm SSG has generated all the 3465 different solution-structures of this industrial
problem in less than 1 min. on a PC/AT; Fig. 6. shows one of them. This solution-structure
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represents the optimal process minimizing the cost function; it is determined by the accelerated
branch and bound method based on algorithm SSG.

A17 A18 A19 A20

A37 A39 A38

A61
Fig. 6. Solution-structure of Example 2.
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