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Abstract

A rigorous foundation is given for the logical formulation of process network synthesis on the basis of the combinatorial axioms
of feasible processing networks. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In process synthesis, a process network can be repre-
sented in either a graph-theoretical or logical mode. A
rigorous combinatorial foundation has been developed
for the former by Friedler, Tarján, Huang and Fan
(1992a), and the logical formulation with the conjunc-
tive normal forms (CNF) and the disjunctive normal
forms (DNF) has been introduced for the latter by
Raman and Grossmann (1993). To facilitate the appli-
cation of the logical formulation, however, its mathe-
matical foundation need be rendered rigorous. The
present note is intended to accomplish this by the
rigorous combinatorial approach; the exact mathemati-
cal transformation from the combinatorial approach to
the approach based on logical formulation will be
identified. This transformation furnishes those who
prefer logical formulation with all the effective devices
and tools developed through the combinatorial
approach.

The process structures can be represented unambigu-
ously by P-graphs in process network synthesis (see
Friedler et al., 1992a). The rigorously defined

super-structure, i.e. the maximal structure, can be al-
gorithmically generated (Friedler, Tarján, Huang &
Fan, 1993), thus rendering it possible to take into
account complex structures, such as those with a large
number of interconnected loops, in process network
synthesis. The risk of excluding feasible or potentially
optimal networks from consideration and the unneces-
sary consideration of infeasible networks, therefore, are
eliminated. All algorithms established for the combina-
torial approach can be adopted; examples of such al-
gorithms are those for accelerating the branch-and-
bound search (Friedler, Varga, Fehér & Fan, 1996) and
for integrating the synthesis of a process and its waste
treatment system (Friedler, Varga & Fan, 1995b). In
other words, this note will demonstrate that well-
defined algorithms are available for rigorously generat-
ing both the CNF and DNF in logical formulation.

2. Generation of the logical forms based on the
super-structure

The procedure of Raman and Grossmann (1991a,b,
1993, 1994) for generating the CNF assumes that the
super-structure of the synthesis problem of concern is
represented by a simple directed graph. The nodes in
this graph are classified into various groups depending
on the tasks to be performed. Interconnecting nodes
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represent splitters, mixers, sources, and sinks; and the
remaining nodes, the processing or operating units. A
Boolean variable is assigned to each node in the graph;
specifically, variables Z’s are for the interconnecting
nodes, and variables Y’s are for the remaining nodes.
This gives rise to the following relationships (Raman &
Grossmann, 1993).

Zm[Ya�Yb and Zm[Yc correspond to the
mixers, where Ya and Yb are the inputs and Yc
is the output of mixer Zm; Zs[Ya and Zs[Yb�Yc,
the splitters, where Ya is the input and Yb and Yc are
the outputs of splitter Zs; and Yu[
Ya�Yb�…�Yn and Yu[Y1�Y2�…�Ym, the
operating units, where Ya, Yb,…, and Yn are the
inputs and Y1, Y2,…, and Ym are the outputs of
operating unit Yu.

3. Combinatorial theory for process network synthesis

For convenience, the combinatorial theory of process
network synthesis is outlined below (Friedler et al.,
1992a; Friedler, Fan & Imreh, 1998).

Let M be a given non-empty finite set of all materials
to be involved in a process synthesis problem.
This problem can then be defined structurally
by triplet (P, R, O), where P is the set of products to be
manufactured; R, the set of raw materials; and
O, the set of operating units. The relationship
among M, P, R, and O can be mathematically ex-
pressed as P¦M; R¦M; PSR=¥; P"¥; MSO=
¥; and O¤Ô(M)×Ô(M) where Ô denotes the
power-set.

To represent a process structure in synthesis, P-
graphs can be conveniently adopted; a P-graph is
defined as pair (m,s) of finite sets of materials m and
operating units s provided that s¤Ô(m)×Ô(m) is
satisfied. The nodes of the graph are in set N=m@s
and the arcs in A={(x, y): x= (a, b)�s, y�m,
y�b}@{(y, x): x= (a,b)�s, y�m, y�a}. Moreover,
d-(x) denotes the in-degree of material x (x�m), i.e.
d-(x)= �D(x)�, where D(x)={(a, b)�s: x�b}; and [x, y]
a path from node x to node y in the graph.

The P-graph is a general representation tool imple-
mentable with facility and rigor for solving a wide
variety of synthesis problems ranging from the synthe-

sis of networks of elementary reactions to the synthesis
of processing systems. Nevertheless, this paper is in-
tended neither to contrast the domains of applicability
of the combinatorial and logical formulations nor to
compare the efficacy of the two formulations in their
applications.

The following set of axioms has been constructed to
express the combinatorial properties to which a feasible
process structure, P-graph (m, s), should conform (see,
e.g. Friedler et al., 1992a).

3.1. Axioms of combinatorially feasible networks or
structures

P-graph (m, s) is combinatorially feasible for synthe-
sis problem (P, R, O) if the following axioms are
satisfied.

(S1) Every final product is represented in the graph,
i.e. P¤m.
(S2) A vertex representing a material in m has no
input if and only if it represents a raw material, i.e.
(Öx�m)(d−(x)=0Ux�R).
(S3) Every operating unit represented in the graph is
defined in the synthesis problem, i.e. s¤O.
(S4) Every vertex of the graph representing an oper-
ating unit has at least one path leading to a vertex
representing a final product, i.e. (Öy0�s)((× path
[y0, y1])(y1�P)).
(S5) Every vertex of the graph representing a material
must be an input to or an output from at least one
vertex representing an operating unit in the graph,
i.e. (Öx�m)((× (a, b)�s)(x� (a@b))).

Any feasible network of a synthesis problem must
satisfy the above five axioms; moreover, any network
satisfying these axioms can be a feasible structure for
the problem. The set of axioms, therefore, can not be
extended to reduce the set of solutions further without
the risk of eliminating the optimal solution.

It is worth noting that two classes of information
pertaining to process structures need be strictly distin-
guished in developing a process synthesis procedure so
that it is verifiable whenever necessary. The first is the
structural properties to be satisfied by all solutions
because of the inherent characteristics of process struc-
tures they represent, and the second is additional prop-
erties reflecting the designer’s wishes, e.g. to exclude the
parallel production of a certain material, even though
they may lead to the elimination of some feasible
structures.

Obviously, the axioms of combinatorial feasible
structures belong to the first class of information;
hence, they can serve as the basis of a synthesis method
or algorithm. The space of feasible structures may be
reduced by resorting to the second class of information,
thereby giving rise to a parameter or parameters of the

Fig. 1. Simple synthesis problem for illustration (Raman & Gross-
mann, 1993).
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Fig. 2. P-graph of the example (Friedler et al., 1995a).

materials is given by M={m1, m2,…, mn}, and
for convenience, the two index sets, I and J, are
defined as I={1, 2,…, k} and J={1, 2,…, n}, respec-
tively.

Let us define the sets of indices of the products,
MP={j�J: mj�P}; the operating units producing mate-
rial mj (j�J), OM–j={i�I: mj�bi}; the operating units
producing any raw material, OR={i�I: RSbi"¥};
the input materials to operating unit oi(i�I) excluding
raw materials, MN–i={j�J: mj�ai¯R}; the operating
units producing no product, OP={i�I: PSbi=¥};
and the operating units, each receiving an output from
operating unit oi(i�I) as an input, OS–i={h�I:
biSah"¥}.

The CNF of the process network synthesis problem
can be generated algorithmically as
(O1)� (O2)� (O3)� (O4), where (O1) through (O4)
are the logical forms of the axioms of combinatorially
feasible structures as given below.

(O1) /
j�MP

( 0
i�OM–j

Yi)

(O2) /
i�OR

¬Yi

(O3) /
i�I, j�MN–i

(¬Yi�( 0
h�OM–j

Yh))

(O4) /
i�OP

(¬Yi�( 0
h�OS–i

Yh))

In the following, only the derivation of (O1) is given
in detail because of space limitation. Axiom (S1) states
that each final product is represented on a feasible
process structure. Since a product cannot be a raw
material, it must be an output from at least one operat-
ing unit represented in the structure according to axiom
(S2). In other words, for any j�MP, for which mj is a
product, there is at least one i�OM–j, where operating
unit oi produces mj, such that Yi is true; consequently,
� j�MP (�i�OM–jYi).

Note that expressions (O3) and (O4) are derived from
the expressions, � i�I, j�MN–i(Yi[ (�h�OM–jYh)) and
� i�OP(Yi[ (�h�OS–iYh)), respectively. These forms are
similar to the predecessor and successor premiere
cuts implemented by Hooker, Yan, Grossmann and
Raman (1994); however, expressions (O3) and
(O4) are more exact, they have been constructed from
the axioms of the combinatorial theory. Expressions
(O2) and (O3) are collectively equivalent to axiom (S2).
Note that axiom (S3) is implicitly included in the
system in defining the Boolean variables. Ex-
pression (O4) corresponds to axiom (S4); nevertheless,
the latter is more rigorous than the former, i.e. the
latter may exclude more infeasible networks than the
former.

synthesis algorithm controllable externally (with the
risk of excluding the optimal solution).

The simple synthesis problem depicted in Fig. 1 (see
Raman & Grossmann, 1993) yields three solutions: one
containing operating units 1 and 3; one containing
operating units 2 and 3; and one containing operating
units 1, 2, and 3. Even though the co-existence of
operating units 1 and 2 is not optimal in most
cases, it should not be excluded in general. Neverthe-
less, the designer can furnish an extra constraint to
exclude all or certain parallel processes. Algorithm
SSG (Friedler, Tarján, Huang & Fan, 1992b)
generates all networks by taking into account every
subset of the set of operating units producing a mate-
rial, i.e. its power-set; however, algorithm SSG
contains a control parameter for the designer to exclude
certain networks by exploring a subset of this power-
set, e.g. the set of singletons, to exclude parallel produc-
tion.

4. CNF based on the combinatorial axioms

The valid CNF of a process-network synthesis
problem can be generated algorithmically on the basis
of the axioms presented. If P-graph (m, s)
satisfies axiom (S5), then it is determined by the set of
operating units, s (Friedler et al., 1992a). If axiom
(S3) is also satisfied, the set of materials can be specified
as m=@ (a, b)�s (a@b). Hence, axiom (S5) can be
replaced by this expression if axiom (S3) is satisfied.
To represent a process structure described by s(¤O),
logical variables are associated with every operating
unit in set O. Let O={(a1, b1),(a2, b2),…,(ak, bk)};
then, logical variable Yi is associated with operating
unit oi= (ai, bi); its value is true if and only if oi�s. As
a result, Boolean variables Y1, Y2,…, and Yk define a
process structure. In the current treatment, the set of
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Fig. 3. Combinatorially feasible structures of the example (Friedler et al., 1995a).
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5. Generation of the DNF by a combinatorial algorithm

The DNF can be generated from the CNF (Raman &
Grossmann, 1991a); however, the algorithm for it is
NP-hard, i.e. complex. Another way of generating the
DNF is through the combinatorial algorithms of pro-
cess synthesis, which directly obtain DNF without
CNF, as described below.

A truth assignment of the complete DNF
satisfies exactly one of its clauses; consequently, each
clause of the DNF of the synthesis problem corre-
sponds to one combinatorially feasible network.
The complete DNF of the synthesis problem,
therefore, can be readily obtained if the set of feasible
networks is available. Algorithm SSG based on the
combinatorial theory is capable of generating such fea-
sible networks (Friedler et al., 1992b); consequently, the
results can be obtained either as a set of P-graphs or as
the complete DNF depending on the type of output
desired.

6. Example

Let a process network synthesis problem be given by
triplet (P, R, O), where P={A} is the set of products;
R={E, G, J, K, L}, the set of raw materials; and O=
{Y1, Y2, Y3, Y4, Y5, Y6, Y7}, the set of operating
units. The operating units in set O are: Y1=
({C},{A, F}); Y2= ({D},{A, B}); Y3= ({E, F},{C});
Y4= ({F, G},{C, D}); Y5= ({G, H},{D}); Y6=
({J},{F}); and Y7= ({K, L},{H}). Note that the set of
materials is M={A, B, C, D, E, F, G, H, J, K, L}. This
example is the same as Example 9 of Friedler, Varga
and Fan (1995a); the corresponding P-graph is given in
Fig. 2. Specifically, the CNF is generated simply as
(O1)� (O2)� (O3)� (O4), where

(O1) Y1�Y2

(O2) true

(O3)

(¬Y1�Y3�Y4)� (¬Y2�Y4�Y5)

� (¬Y3�Y1�Y6)� (¬Y4�Y1�Y6)� (¬Y5�Y7)

(O4)

(¬Y3�Y1)� (¬Y4�Y1�Y2)� (¬Y5�Y2)

� (¬Y6�Y3�Y4)� (¬Y7�Y5)

The DNF of the problem is determined by algorithm
SSG (Friedler et al., 1992b); each structure generated
by this algorithm is represented as one clause in the
DNF given below and as a P-graph given in Fig. 3
(Friedler et al., 1995a).

There exists a one-to-one correspondence between
the clauses of this DNF and the P-graphs of Fig. 3. For
instance, the first clause of the DNF,
(Y1�¬Y2�Y3�¬Y4�¬Y5�¬Y6�¬Y7), repre-
sents the structure including operating units 1 and 3
and excluding operating units 2 and 4 through 7, which
is the structure given in Fig. 3 (1).

The solutions of the CNF and DNF are identical; the
corresponding structures are combinatorially feasible
because they satisfy axioms (S1) through (S5). Note
that cutting the recirculation by eliminating the stream
from operating unit Y1 to material F, as proposed in
Raman and Grossmann (1993), excludes eight struc-
tures, e.g. the first one, represented by the above clauses
in the DNF; nevertheless, any of these excluded struc-
tures can be potentially optimal.

7. Concluding remarks

The generation of the conjunctive and disjunctive
normal forms to solve process synthesis problems has
been mathematically established on the basis of the
combinatorial theory of total flowsheet synthesis. It can
be stated that in general, no advantage can be gained
by switching to logical formulation once a solution of a
synthesis problem is initiated by the combinatorial
approach.
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