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Abstract

The paper explains a paradigm for the integration of engineering knowledge with the search strategy of a Branch and Bound
algorithm. The optimization is fairly generic and addresses industrial applications comprising power-generating units. The solution
concerns the allocation of the units over time and considers expected variations in the heat load and power. The engineering
knowledge exploits the Hardware Composites, a conceptual tool for the operation of utility systems. The knowledge is capitalized
at three different levels: (i) to exclude redundant combinations of decision variables, (ii) to prioritize the branching of the
algorithm, and (iii) to prune the binary tree. Using a non-commercial LP, an MILP solver is designed and compared with
highly-valued, state-of-the-art commercial solvers. The comparisons are particularly impressive in that the customized develop-
ment outperforms the sophisticated packages and accommodates accelerations of at least two orders of magnitude. © 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The impact of optimization and mathematical pro-
gramming becomes evident through a variety of appli-
cations in design and operations. The latter typically
use general platforms and environments (GAMS, g-
PROMS) that employ interfaces with general-purpose
solvers. The environments make the applications easy
to set up and require little effort from the engineer. The
solvers typically constitute contributions from the Op-
erations Research community. At their best, they epito-
mize general theoretical, computational and numerical
knowledge in relevance to the different classes of prob-
lems they consider (LP’s, MILP’s, NLP’s, MINLP’s).
The paper explains significant improvements in inte-
grating knowledge in relevance with the type of applica-
tion. Still within a generic framework, engineering
knowledge is used to prioritize and coordinate the
optimization search or simplify the optimization effort.

Previous efforts explain the importance of taking
advantage of knowledge at the modeling stage. Raman

and Grossmann (1992) reported improvements in solv-
ing MINLP problems with a combined use of logic and
heuristics. They illustrated their ideas in process synthe-
sis problems (1993), employed inference logic for the
branching of the decision variables, and studied the use
of logical disjunctions as mixed-integer constraints
(1994). Friedler, Tarjan, Huang and Fan (1992) illus-
trated the potential for dramatic reductions in the
solution space. Friedler, Varga and Fan (1995) later
introduced a decision mapping approach that is partic-
ularly efficient for process synthesis applications.
Heever and Grossmann (1999) addressed the solution
of MINLP’s for multiperiod problems. They employed
a disjunctive OA and a disjunctive bilevel decomposi-
tion.

The optimization technology is a natural extension of
the simulation technology now widely accepted in in-
dustry. It might be instructive to recall, however, that
simulation earned acceptance and credit with cus-
tomized algorithms (c.f. the inside-out algorithm for
distillation). In a similar vein, optimization solvers are
able to incorporate problem information. In the case of
MILP’s, for example, it’s well known that the efficiency
of the B&B relies on the selection criteria of the branch-
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ing variables (Parker & Rardin, 1988; Floudas, 1995).
In the absence of specific knowledge, the use of general
heuristics cannot guarantee performance tantamount to
the difficulty or the actual size of the problem. The
paper explains the development of a customized B&B
to incorporate conceptual knowledge and reports sig-
nificant reductions in the computational effort involved.
The knowledge is used from the Hardware Composites
(Mavromatis & Kokossis, 1998a,b; Strouvalis Mavro-
matis & Kokossis, 1998) originally proposed as a
graphical tool for the analysis and optimization of
turbine networks.

2. Problem description and challenges

The problem considers scheduling applications of
turbines and boilers with an emphasis on the mainte-
nance of these units. The objective is to identify the
optimal sequence to shut down turbines and boilers for
inspection and maintenance. Such sequences contribute
to the reliability, availability and profitability of the
plant. Switching-off units imposes penalties to the ob-
jective function. As less efficient units are loaded to
compensate for the ones maintained, the optimization
has to consider demand variations over time, differ-
ences in the units’ efficiencies and feasibility aspects.
The formulations yield MILP problems with a large
number of variables.

Conventional approaches propound the formulation
of efficient models to solve with standard commercial
solvers. Even for moderate networks, however, the
problem assumes prohibitive dimensions. Furthermore,
due to minor differences in nearby solutions, the branch
and bound tree can be flat and difficult to fathom.
Given the efficiencies and the capacities of the units,
conceptual information can be used to coordinate the
branching, support the bounding and reduce the search
space.

3. Solver customization

The customization spans the three main stages of the
branch and bound algorithm: the selection of the re-
laxed variables (candidate selection), the development
of the bounds (bounding) and the coordination of the
termination tests (pruning). The incorporation of
knowledge introduces customized hierarchies for the
selection of binary variables and customized tests for
minimizing the enumerated nodes. The contributions
are explained at two levels:
1. The reduction of the solution space.
2. The tuning and customization of the solver.

The reduction of the solution space is accomplished
by screening out infeasible and inferior combinations.
This first level makes simple and straightforward use of
the engineering information. The second level consti-
tutes a more refined analysis of the knowledge. The
basic idea is to replace general-purpose heuristics with a
set of priorities to coordinate the branching (candidate
selection) and enhance the pruning. Especially the latter
significantly decreases the number of LP’s to solve.

3.1. Space reduction

The envelope of the Hardware Composites (Mavro-
matis and Kokossis 1998a,b) encloses all sets of de-
mands and determines the possible maintenance
scenarios. The relative position of the demands and the
units determines favorable, unfavorable and impossible
combinations. Fig. 1 a, b illustrates the Hardware
Composites for a network of four steam turbines and
two boilers. The steam and power demands are plotted
over the considered time horizon; the graphs yield the
optimal system provided all units are available for the
operation. For the set of demands A1, shown in Fig.
1a, no turbine can be shut down; the high demands in
power and steam dictate the participation of all units.
Similarly in the set A2 of Fig. 1b no boiler can be
switched-off as both are needed to accommodate the
high inlet steam turbine flowrates. Contrary to A1 and
A2, sets B1 and B2 are candidate periods for mainte-
nance.

3.2. Branching criteria

As units are switched off, penalties in the objective
function generally change with the efficiency of the
units, with the efficiency of the units available to re-
place them and with the layout of demands that are
serviced at the particular period. Each period is affected
to a different extent and preferences/priorities are
strong functions of the layout of demands. High prefer-
ences relate to minor alterations in the operation of the
utility network. The stronger the link a turbine has with
a period the less favorable the maintenance of the unit
appears in that period.Fig. 1.
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Fig. 2.

with Unit i having higher priority than j and Unit j
higher priority than k. The prioritization determines a
preprocessing stage for the decision variables Y(U,P) as
they are assigned to every unit U and period P. It
defines the sequence of branching variables and follows
a depth-first approach with backtracking.

Binary variables of high priorities are branched first.
Let us illustrate the terminology and the point with two
Units A and B and two periods. Let PU={Unit A,
Unit B} and the ordered sets PL(Unit A)={a1, a2},
and PL(Unit B)={b1, b2} to describe the priorities.
Fig. 2 represents the branch and bound tree. The
number of nodes reflects the branching sequence. The
first node corresponds to the unit with the highest
priority switched-off (Unit A) in the period of the
highest priority (period a1). The second node is that of
the next unit in priority (Unit B) switched-off in the
period of its own highest priority (period b1). The
branch and bound search proceeds to the enumeration
of the remaining combinations with the same logic.
There are four maintenance scenarios (terminal nodes):
(Unit A, Unit B)= (a1, b1), then (a1, b2), (a2, b1) and
finally (a2, b2).

Let us represent the integer solution space by a
matrix with rows that correspond to units and columns
that relate to periods (Fig. 3a). The prioritization of
periods and units respectively defines the sequences
over the columns and rows. The matrix of Fig. 3b can
be employed by the branch and bound solver to guide
the search.

3.3. Enhanced pruning

The enhanced pruning uses properties of dependent
and independent periods. Suppose Unit A and Unit B
feature the priority lists PL(A)={a1, a2, …, ai, …, an}
and PL(B)={b1, b2, …, bj, …, bm}. A scheduling
combination (Unit A, Unit B)= (ai, bj) is dependent if:
1. ai=bj or
2. the combination is infeasible.

Otherwise the combination is independent. For inde-
pendent combinations tests are made using the lists.
The tests select the combinations to enumerate and
exclude a further enumeration of nodes (as having a
guaranteed lower potential). Consequently, nodes that
follow independent nodes are pruned. For units with
two or more dependent periods the tests can not be
applied and conventional branching is required.

The concept is illustrated with the illustration exam-
ple of Fig. 4. Following the previous discussion, the
first enumeration is (Unit A, Unit B)= (a1, b1). Let us
assume:

Case (I): (a1, b1) is independent (feasible and a1"b1).
No other combination is more advantageous: options
lower in the list [(a1, b2), (a2, b1), (a2, b2)] are dominated
by (a1, b1) and can be safely pruned.

Fig. 3.

The idea can be formalized as follows. Let MP(U) be
the set of feasible maintenance periods P for a unit U :
MP(U)={Pi, …, Pj, …, Pk}. Associated with each
period is a lower bound that corresponds to the (low-
est) operating cost (objective function) that enables the
full list of units. The bounds can be calculated by
solving a separate LP for each period. Let the set of
lower bounds, LB={lb}, over all periods n of the time
horizon be: LB={lb1, lb2, …, lbi, …, lbj, …,lbk, …,
lbn}. For an idle unit in the period k a penalty is
assigned calculated by shutting down the unit and
evaluating the new objective value, OB(U)k. The
penalty is given by: PT(U)k= (OB(U)k− lbk). Let the
set of penalties PE(U) be:

PE(U)={(OB(U)i− lbi), …, (OB(U)j− lbj)

× , …, (OB(U)k− lbk)}

Sorted in ascending order the set defines the basic
priority list PL(U):

PL(U)={(OB(U)j− lbj), …, (OB(U)i− lbi)

× , …, (OB(U)k− lbk)}

Priorities are established per period for each unit
(period prioritization) as well as per unit (unit priori-
tization). Priority conflicts are sorted by merits of ca-
pacity and/or efficiency. Let the set of prioritized units
PU be:

PU={Uniti, Unitj, …, Unitk, …}
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Case (II): (a1, b1) is dependent (a1=b1 and/or
infeasible).

Consequently, the search has to explore further
nodes. The ones on a2 and b2 include the (presumably
feasible) independent (a1, b2) and (a2, b1); the one on
(a2, b2) can alternatively be rejected.

Priority lists equally apply for larger problems (i.e.
more units and periods). The branch and bound search
enumerates only options that survive the pruning tests
on the nodes. It should be pointed out that pruning
rigorous and does not compromise on the optimality of
the solution.

4. Computational experiments

4.1. Illustration 1

The utility system (Fig. 5) includes six steam turbines
— backpressure passout (turbines 1, 2, 3) and single
(turbines 4, 5, 6) — and three boilers. The utility
supply produces steam (S stands as the passout
flowrate) and power. The maintenance imposes the
switch-off on every hardware component (turbine and
boiler) for one period. There are 12 periods of opera-
tion with their characteristic demands (four per period).

The integer variables assigned are 108 [(number of
units)× (number of periods)]. The steam turbine opera-
tion is described by the inlet steam consumption (1) and
that of boilers by their fuel consumption (2):

Mi=mi(Ei)+ (1−mi/gi)(Si) (1)

Fj=Cj(MSj) (2)

where, Mi, is the inlet steam consumption of turbine i ;
Ei, the power output of turbine i ; Si, the steam passout
supplied by turbine i ; mi, gi, characteristic parameters
of the turbine thermodynamic efficiency; Fj, the cost of
fuel consumption of boiler j, MSj, the steam flowrate
raised by boiler j and Cj, weighed cost coefficient of
boiler j.

The objective is assumed to be the minimization of
the cost (of fuel) over the entire time horizon.

The optimal solution space is visualized by the Hard-
ware Composites with all units available for operation
(Fig. 5). The graph consists of linear segments (m and
g) representing the steam turbine expansion paths. The
most efficient expansion paths are first fully loaded
before less efficient are used. The boiler operation is
represented by three zones (dashed lines). The most
efficient boiler is first employed (Boiler 1) followed by
the less efficient ones (Boilers 2 and 3). Any set of
demands can be directly traced on the graph (power
output versus passout demand).

The solution is addressed by the solver customization
through the solver matrix formulation (prescreening
and preprocessing of the solution space). The B&B
algorithm is then applied to navigate it and locate the
optimal solution. The development of the customized
search is explained as follows.
1. Solution space reduction. The understanding of

hardware limits and position of demands depicts
infeasible scenarios: period 11 requires the operation
of turbines 1, 2, 5 and 6, while periods 5, 11, and 12
the operation of all the boilers. Similarly all the
remaining infeasible options are identified and re-
moved from the solution space providing the possi-
ble maintenance periods sets MP(U) of unit U.

2. Period prioritization. Penalties are calculated for all
feasible maintenance scenarios of MP(U) to quan-
tify the deviation from the lower bound of each
period. The penalties in increasing sequence define
the priority lists for each unit.

3. Unit prioritization. The most important thing for
operation (assigned with the highest priorities) units
are situated on the bottom-left part of the Hardware
Composites and the less efficient on the upper-right
part. As such a priority sequence of units extracted
is:

T4\T5\T1\B1\T2\B2\T3\T6

Fig. 4.

Fig. 5.
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Table 1

CustomizedInteger variables: 108, Cont. GAMS (OSL)
variables: 1021 B&B

624Iterations 71 443
22 034624Nodes

997CPU 366 MHz (s) 285
1 011 276Objective value ($/operating 1 011 276

horizon)

The customized solver searches the solution space
capitalizing on the structure of the above matrix. The
search is initiated from the first elements of upper rows
and proceeds to deeper options only if there is a
justified reason. The enhanced pruning effectively disre-
gards inferior nodes from enumeration. The result is the
acceleration of the B&B compared to the solution of
the same model with OSL implemented in GAMS as
shown in Table 1. Two orders of magnitude less nodes
are enumerated. The optimal maintenance solution vec-
tor is shown below (Table 1).

(T4, T5, T1, B1, T2, B2, B3, T6, T3)

= (3, 1, 4, 9, 2, 2, 6, 12, 5)

4.2. Illustration 2

The utility system of Fig. 6 consists of one gas and
five steam turbines. The inlet steam is provided both by
the three boilers and the Heat Recovery Steam Genera-
tor of the gas turbine. The utility network supplies
power and process steam (MP steam passout). Mainte-
nance scheduling imposes the shut-down of every unit
for one period. The operational horizon consists of 18
periods with one characteristic set of demands per
period. The problem requires the assignment of 162
integer variables. The operation of steam turbines and
boilers is modeled as in illustration 1. The gas turbine
operation is represented by the steam raised in the
HRSG (3) and the fuel burnt in the combustion cham-
ber (4):

HRS=A (Eg) (3)

Fg=Cg(HRS) (4)

where, HRS is the steam flowrate raised in the Heat
Recovery Steam Generator; Eg, the power output of the
gas turbine; Fg, the cost of fuel consumption of the gas
turbine, A, the coefficient of the gas turbine efficiency
and Cg, weighed cost coefficient of the gas turbine.

The customized search is performed as follows:
1. Solution space reduction. The integer solution space

is reduced to the feasible maintenance scenarios for
each unit. The screening of infeasible modes pro-
vides the sets MP(U) for each unit U.

2. Period prioritization. Following the penalty analy-
sis, priorities are assigned for the shut down of
units. Priority lists PL(U) are acquired.

3. Unit prioritization. Based on qualitative analysis,
units more important to operations are given higher
priorities. The defined set of prioritized units is:
PU=GT, T1, B1, T2, T5, T3, B2, B3, T4}
transforming the integer solution space to the solver
matrix:

Fig. 6.

This sequence is the result of conceptual analysis
supported by the Hardware Composites. Thereafter the
PU set is:

PU={T4, T5, T1, B1, T2, B2, T3, T6}

Having obtained sets PL(U) and PU, the solver matrix
is formulated:

T4 3, 2, 4, 9, 1, 8, 10, 7, 6, 12, 11

T5 1, 2, 3, 4, 5, 6, 8, 7, 9

T1 2, 1, 3, 4, 8, 5, 6, 7, 9, 10, 12

B1 9, 2, 3, 8, 10, 7

T2 2, 1, 3, 4, 8, 7, 6, 9, 10, 12

B2 9, 2, 3, 8, 10, 7

B3 6, 10, 7, 4, 9, 8, 1, 3, 2

T6 12, 5, 6, 10, 7, 4, 9, 1, 8, 3, 2

T3 5, 4, 1, 8, 3, 2, 8, 7, 9, 12, 10, 11
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Table 2

Integer variables: 162, Cont. Customized GAMS (OSL)
variables: 505 B&B

Iterations 100 00070
(interger)

70Nodes 42396
7376CPU 366 MHz (s)

Objective value ($/operating 704 423 705 232
horizon)

identifies the optimal schedule in more than three or-
ders of magnitude less nodes (Table 2).

4.3. Impact of constraints

Four sets of constraints are introduced to the prob-
lem. The computational experiment aims at testing the
solver on different solution spaces. The presence of
constraints makes the node of the optimal solution
vector (1, 5, 5, 2, 11, 3, 18, 17, 16) infeasible, imposing
the branching of deeper nodes. Depending on the spe-
cific set of constraints the solution space is changed at
different parts of the B&B tree. The question is whether
the customized B&B solver can still enhance the com-
putational efficiency under varying solution space envi-
ronment. Four experiments are performed: each set of
constraints is separately introduced to the model solved
by both OSL and the customized solver. The results are
as presented in Table 3. In all the cases OSL fails to
locate the optimal solution in less than the iteration
limit of 100 000. On the contrary, the B&B solver is not
influenced by the presence of constraints and exhibits
steady efficient performance. At least three orders of
magnitude less nodes need enumeration.

5. Discussion

Combinatorial complexity, variation of demands,
hardware feasibility limits are factors influencing the
solution search efficiency. The proposed B&B is de-
signed to take maximum advantage of the problem’s
structure. At least two orders of magnitude less nodes
have been enumerated before reaching optimality com-
pared to search approaches performed by OSL. Signifi-
cant CPU time reductions are also reported. Especially
for the CPU comparisons it is important to point out
that the customized solver is equipped with an aca-

GT 1, 2, 3, 5, 4, 8, 6, 7, 9

T1 5, 6, 1, 4, 8, 3, 7, 2, 9, 10, 11, 12, 13, 15, 16, 14

B1 5, 11, 18, 6, 12, 10, 1, 4, 7, 3, 8, 13, 2, 9, 16, 15, 17, 14

T2 1, 2, 3, 4, 8, 5, 9, 6, 7, 10, 11, 14, 13, 15, 12, 16

T5 11, 5, 12, 6, 18, 10, 1, 7, 4, 8, 3, 9, 13, 2, 15, 14, 16, 17

T3 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 15, 14, 16

B2 18, 11, 6, 5, 12, 10, 1, 4, 7, 3, 8, 13, 2, 9, 16, 15, 17, 14

B3 17, 14, 6, 15, 18, 13, 9, 12, 10, 7, 8, 2, 11, 3, 4, 6, 1, 51

T4 16, 14, 15, 13, 12, 10, 9, 11, 7, 8, 2, 3, 4, 6, 1, 5

The customized B&B searches for the optimal solu-
tion based on the above prioritized solution space. The
minimum operational cost is achieved when the units
are switched-off as shown in the solution vector:

(GT, T1, B1, T2, T5, T3, B2, B3, T4)

= (1, 5, 5, 2, 11, 3, 18, 17, 16)

Comparison with OSL solver reveals the reduction in
computational needs achieved by the customization of
the solution search (Table 2). The OSL search was
interrupted at the iteration limit of 100 000 without
having found the optimal node. The customized solver

Table 3

Nodes CPU on 366 MHz PC (s) Objective value ($/operating horizon) Solution vector

Set 1
96 8 704, 502.7Customized B&B (1, 6, 5, 2, 11, 3, 18, 17, 16)

708, 004.6750OSL (GAMS) 36647

SET 2
Customized B&B (1, 5, 11, 3, 11, 2, 18, 17, 16)704, 645.3558

78735253 710, 321.7OSL (GAMS)

SET 3
35 3Customized B&B 704, 691.6 (1, 6, 5, 3, 11, 2, 18, 17, 16)

706, 284.591837377OSL (GAMS)

SET 4
48 (1, 6, 11, 2, 5, 3, 18, 14, 16)Customized B&B 704, 649.54

OSL (GAMS) 39614 790 706, 617.2
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demic LP solver. Although it is not as efficient as
commercial LP solvers, the overall B&B solver is more
efficient than commercial MILP solvers. The difference
is justified by the special built-in interface between
solver and problem.

The extra pruning stage is drastic allowing for signifi-
cant parts of the solution space to be deleted and the
optimal node is effectively identified (Table 3). The
customized solver is capable of profiting from special
properties while general-purpose algorithms can not.
The Hardware Composites provide the appropriate
background for the conceptual analysis of computa-
tional aspects and space characteristics disregarded un-
der full solution approaches.

The objective function of operational problems is
usually dominated by flat profiles. A pool of similar
solutions with minor difference in objective value exists
impeding the solver efficiency. Conventional solvers are
trapped in local optima. This was the case in illustra-
tion 2 where OSL failed to reach optimality in reason-
able times. The B&B solver navigates the space in an
arranged manner avoiding the impact of such complex-
ities.

6. Conclusions

The paper outlines the development of customized
solvers and reports on the advantages observed from
the customization in optimization applications. Adhoc
inexpensive solvers are shown to be superior to expen-
sive commercial packages. Customized solution search
engines with built-in intelligence and search technology
perform better orders of magnitude. Their capability to
apply branching and pruning tailored to the structure
and properties of the solution space rather than using
general-purpose heuristics proves particularly effective.
The integration of the logic is more essential at the level
of the solver and much less at the modeling stage. The
customization is applied for the maintenance scheduling

of utility networks. Similar MILP solvers are possible
to design for a much wider range of applications.

References

Floudas, C. (1995). Nonlinear and mixed-integer optimization, funda-
mentals and applications. Oxford: Oxford University Press.

Friedler, F., Varga, J. B., & Fan, L. T. (1995). Decision-mapping: a
tool for consistent and complete decisions in process synthesis.
Chemical Engineering Science, 50(11), 1755–1768.

Friedler, F., Tarjan, K., Huang, Y. W., & Fan, L. T. (1992).
Graph-theoretic approach to process synthesis: axioms and theo-
rems. Chemical Engineering Science, 47(8), 1973–1988.

Heever, S. A., & Grossmann, I. E. (1999). Disjunctive multiperiod
optimization methods for design and planning of chemical process
systems. Computers & Chemical Engineering, 23, 1075–1095.

Mavromatis, S. P., & Kokossis, A. C. (1998a). Hardware composites:
a new conceptual tool for the analysis and optimisation of steam
turbine networks in chemical process industries — Part I: princi-
ples and construction procedure. Chemical Engineering Science,
53(7), 1405–1434.

Mavromatis, S. P., & Kokossis, A. C. (1998b). Hardware composites:
a new conceptual tool for the analysis and optimisation of steam
turbine networks in chemical process industries — Part II: appli-
cation to operation and design. Chemical Engineering Science,
53(7), 1435–1461.

Parker, G. & Rardin R. (1988). Discrete optimization. New York:
Academic Press.

Raman, R., & Grossmann, I. E. (1992). Integration of logic and
heuristic knowledge in MINLP optimisation for process synthesis.
Computers & Chemical Engineering, 16(3), 155–171.

Strouvalis, A. M., Mavromatis, S. P., & Kokossis, A. C. (1998).
Conceptual optimisation of utility networks using hardware and
comprehensive hardware composites. Computers & Chemial Engi-
neering, 22(22), S175–S182.

Further Reading

Raman, R., & Grossman, I.E. (1993). Symbolic integration of logic in
mixed-integer linear programming techniques for process synthe-
sis. Computers & Chemical Engineering, 17(9), 90–927.

Raman, R., & Grossman, I.E. (1994). Modelling and computational
techniques for logic based integer programming. Computers &
Chemical Engineering, 18(7), 563–578.

.
.


