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Abstract—Decisions involved in process synthesis are often more complex than those involved in other
disciplines. This arises from the fact that such decisions are concerned with specification or identification of
highly interconnected systems, e.g. process structures, which may contain a multitude of recycling loops. It
appears that no rigorous technique is available, which is capable of representing exactly and organizing
efficiently the system of decisions for a process synthesis problem. A novel mathematical notion, deci-
sion-mapping, has been introduced in this work to render the complex decisions in process design and
synthesis consistent and complete. The basic terminologies of decision-mapping, including extension,
equivalence, completeness, complementariness, and active domain, have been defined based on rigorous
set-theoretic formalism, and the most important properties of decision-mappings have been identified and
proved. Decision-mapping, as a rigorously established technique, is directly applicable in developing
efficient and exact process synthesis methods or improving existing methods. The applicability and

meritorious features of this new technique are illustrated by synthesizing a large scale process.

1. INTRODUCTION

Efforts to apply mathematical programming methods
to process synthesis have yielded encouraging results;
nevertheless, a number of major issues remain un-
resolved. The principal ones are establishment of the
mathematical foundation necessary to validate the
algorithms for optimal process synthesis, and the re-
duction in the complexity of the mathematical pro-
gramming algorithms for process synthesis.

A thorough understanding of the unique combina-
torial properties of process structures enables us to
validate rigorously the algorithms for process syn-
thesis and to reduce drastically the complexity of
these algorithms. In principle, two types of ap-
proaches are available for this purpose; they are lo-
gical formulation (Raman and Grossmann, 1993) and
combinatorics (Friedler et al., 1992c).

Combinatorics has been adopted in the present
approach. The fundamental combinatorial properties
of feasible process structures have been expressed
as a set of axioms (Friedler er al., 1992b,c). For the
MINLP model of process synthesis, these axioms
constrain the set of possible values of the integer
variables to the set of combinatorially feasible values,
thereby reducing the size of the search space by many
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orders of magnitude. Although these axioms consti-
tute a rigorous foundation for the combinatorial seg-
ment of process synthesis, they do not directly give
rise to the computational algorithms for process syn-
thesis. The reason is that the axioms express self-
evident facts instead of procedures, and thus, they are
not in procedural form. The present work introduces
a new combinatorial technique that is mathematically
rigorous, i.e. decision-mapping, for direct application
to developing and describing the algorithms for pro-
cess synthesis. This technique is capable of represent-
ing process networks or structures of any type and
size. For example, a structure containing any number
of recyclings with arbitrary sizes can be represented in
synthesizing a process by this technique. Decision-
mapping has been developed with rigorous math-
ematical formalism and validated by resorting to the
combinatorial axioms of process synthesis; therefore,
any algorithm based on the decision-mapping can
also be validated rigorously.

The focus of the present work is on the total flow-
sheet synthesis [see e.g. Siirola and Rudd (1971), Lu
and Motard (1985) and Douglas (1988)]. Neverthe-
less, the results are applicable directly or can be ex-
tended to other classes of process synthesis.

2. UNAMBIGUOUS STRUCTURAL REPRESENTATION:
P-GRAPH

For formally analyzing process structures in pro-
cess synthesis, an unambiguous structural representa-
tion is required. Process graph or P-graph, which is
a directed bipartite graph, has been introduced for
this purpose [see Friedler er al. (1992¢)]. A brief
description of P-graph is given below.
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Let M be a given finite nonempty set of objects,
usually material species or materials, that can be
transformed in the process under consideration.
Transformation between two subsets of M occurs in
an operating unit. It is necessary to link this operating
unit to other operating units through the elements of
these two subsets of M.

Let O be the set of operating units to be consid-
ered in synthesis; then, O < p(M)x o (M) where
O~ M = 0. If (&, B) is an operating unit, i.e. (&, f)€ O,
then « is called the input set, and $, the output set of
this operating unit. Pair (M,0) is termed a process
graph or P-graph with the set of vertices M U O
and the set of arcs {(x,y)|y=(apf)e O and
xeal v i{(yx)|y=(xB)e O and xe B} P-graph
(M,0) is defined to be a subgraph of (M',0'),
ie. M,0)sM’,0"), if Mc M and O < 0. The
union of two P-graphs (M;,0,) and (M, 0,),
(M,0,) v (M;,0,), is defined to be P-graph
(M, U M,,0{ U 03). The indegree of vertex X, d ™ (X),
is defined to be the number of arcs with endpoint X If
X is a material, then broadly speaking, d~ (X) is the
number of operating units producing material X.

Example 1. Let us suppose that set M, of materials
and set O; of operating units of P-graph (M,,0,) be
given as

M, ={A,B,C,D,E,F,G,H 1,J,K,L}
and
0, = {({C}.{4,F}),({D}. {4, B}).({E. F}, {C}),
({F,G}.{C,D}).({G. H}.{D}),({J}, {F}),
({K.L}, {H})}.

P-graph (M,,0,) is depicted in Fig. 1. Note that
the input and output sets of operating unit 1,
({C},{A4,F}), are {C} and {4, F}, respectively, and
that the indegree of vertex A4,d”(A), is 2 since two
operating units produce material A.

Fig. 1. P-graph (M ,,0,) where A, B,C, D, E, F, G, H, I, J,
K, and L are the materials, and 1, 2, 3, 4, 5, 6, and 7 are the
operating units.
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P-graph (M,0) contains the interconnections
among the units of 0. Each feasible process corres-
ponds to a subgraph of (M, O); this subgraph can be
generated by decision-mappings.

3. DECISION-MAPPING: DEFINITIONS AND
SUPPORTING THEOREMS

Rigor and clarity demand that various termino-
logies introduced in this work be couched in the
parlance of mathematical formalism. A mapping or
function determines a unique “value” for an argu-
ment; the set of possible arguments, D, is called the
domain; and the set of possible “values”, R, is the range
of the mapping or function. Mapping or function
f determines a “value”, ie. f(x)e R for each xe D.
A mapping or function f; therefore, can be defined as
a special subset of the Cartesian product of D and R,
DxR, ie. fis a set of pairs (x,y) where xe D and
y =f(x)e R. This set of pairs is denoted by f[D].
Thus, while the name of a mapping followed by an
element of its domain in parentheses represents the
value determined by the mapping, e.g. f(x), a mapping
name followed by the domain in square brackets
represents the mapping, e.g. f[D]. The notations of
this type will appear throughout this paper.

Let us suppose that P-graph (M, O) represents the
interconnections of the operating units of a synthesis
problem. Then, for the set of materials M and the set
of operating units 0, 0 = @ (M) x @(M) holds. Let us
now induce mapping A from the set of materials to the
set of subsets of the set of operating units, ie. from
M to ©(0). This mapping determines the set of oper-
ating units producing material X for any X e M; con-
sequently, A(X) = {(«, B)| (e, f)e O and X € f}.

Definition 1. Let m be a subset of M, and X be an
element of m; moreover, let §(X) be a subset of A(X).
Then, mapping & from set m to the set of subsets of set
0, 8[m] = {(X,5(X)| X € m}, is defined to be a deci-
sion-mapping on m, with m being the domain of the
mapping. Decision-mapping 6,{m,] is defined to be
the restriction of decision-mapping 8,[m,] to m, if
m; =m, and 8[m;] = {(X,8,(X))[ Xe m}. Thus,
the “value” of 8, is equal to that of 3, for any element
of m,.

Mapping A[M] = {{(X,A(X))| Xe M} can also be
considered as a decision-mapping; it will be termed as
the maximal decision-mapping.

Example 2. Let us revisit Example 1. According to
the definition of A,(X), sets A;(A) through A, (L) can
be given for P-graph (M, 0,) as follows:

A1(4) = {({C}.{4, F}),({D}, {4, B})}
Ay(B) = {({D}.{4,B})}

A(C) = {({E, F},{C}).({F,G},{C.D})}
Ay(D) = {({F.G}.{C.D}).({G, H},{D})}
A(E)=0

AF) = {({CL {4, FI (1 {F])}
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AG)=9
A(H) = {({K.L}.{H})}
AI(I) = Al(‘])': A(K) = AL)= 0.

Let us now define decision-mapping &, for P-graph
(M1, 0,) of this example. The domain, m,, of é, must
be a subset of M, e.g., m; = {A, D, H}. Suppose that
5,(4) = {({D}. {4, B})}.5,(D) = {({F.G}.{C.D}),
({G,H},{D})}, and 6,(H) = Q. Obviously, §,(4) =
Ay(A), 6,(D) < Ay(D), and J,(H) = A,(H); therefore,
0:[mi] = {(4, 6,(4)),(D.3,(D)),(H, 3,(H))} = {(4,
{({D}, {4, B})}).(D,{({F,G},{C,D}), ({G,H},{D})}),
(H,®} is a decision-mapping of the example.

The rigorous definition of a P-graph of a decision-
mapping requires additional tools other than those
currently available as will be elaborated later. Never-
theless, for illustration, let us consider the operating
units include in the range of a decision-mapping as its
P-graph. The P-graph of decision-mapping &, [m,] of
Example 2 is illustrated in Fig. 2.

To examine the major properties of process struc-
tures, special class of decision-mapping must be intro-
duced.

Definition 2. The complement of decision-mapping
8[m] is defined by d[m]={(X,Y)|Xem and
Y = A(X)/5(X)}; thus, for Xe m, 5(X) = A(X)/5(X).
Since 6(X) is a set of operating units producing
material X, 5(X) is the set of operating units produ-
cing X, but are not included in §(X).

The consistency of decisions is crucial in synthesiz-
ing a process. For example, we can decide indepen-
dently that an operating unit producing materials
X and Y be included in a process for the production
of material X and be excluded from the production
of material Y, thereby giving rise to a contradiction
in the system of decisions. To avoid such a contra-
diction, consistent decision-mappings must be con-
sidered.

Definition 3. Decision-mapping 3[m] is said to be
consistent if |m| <1 or (8(X)n 8(Y)) U (5(X)n

6(Y)) = A(X) n A(Y) for any X,Ye m; otherwise, it

Fig. 2. P-graph of decision-mapping é,{m,].
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is inconsistent. Let m' = m. We say that the decision-
mapping d[m] is consistent on m’ if the decision-map-
ping d[m’'] is consistent, where 6[m'] denotes the
restriction of 6{m] to m'. Obviously, if 6[m] is consis-
tent, then it is consistent on any subset of m.

In other words, a decision-mapping is considered to
be consistent if every operating unit producing mater-
ials X and Y is included in or excluded from both
0(X) and 4(Y). Another equivalent definition for con-
sistency can be established by the following theorem.

Theorem 1. Decision-mapping 6[m] for which |m| > 1
is consistent if and only if 8(X) n 8(Y) =0 for all X,
Yem.

The proofs of the above theorem and all other
theorems are given in Appendix A.

Example 3. Decision-mapping &, [m,] in Example 2
is consistent because 8;(4) 6;(D)=0; §,(4) N
3i(H) = Q é1(4) n 51(Dl= 0 (AN (H)=8
(D) (H)=0, and 6,(D) ~8,(H) =9. Never-
theless, decision-mapping d,[m,] = 6,[m,] U {(C,{
({E, F},{C})})} is inconsistent since 3,(D) N §,(C) =
{({F,G}, {C,D})} # 0. In 6,[m,], operating unit
({F,G},{C,D}) is simultaneously included and ex-
cluded from the consideration, thereby resulting in
a contradiction in the system of decisions.

It is of importance to decide which decision-map-
pings be considered equivalent. For example, deci-
sion-mapping &3[m; v {B}] =4,[m,] v {(B,{({D},
14, B})})} is different from 6, [m, ]; nevertheless, both
yield an identical structure, thus implying that these
two decision-mappings have some equivalence; see
Fig. 2. This type of equivalence will be established on
the closure of the decision-mapping. For this purpose,
let the set of operating units of decision-mapping
é6[m] be denoted by op(d[m]), and the set of materials
of set o of operating units, by mat(o); hence,
op(d[m])= [J 4(X) and matie)= [J (xu p).

Xem (a,B)eo0
Definition 4. For consistent decision-mapping é[m],
let o= op(6fm]}), m = mat{e) um, and é'[m]=
{(X, )] Xe mand Y = {(x,f8)|(«, f)c 0 and X e B}}.
Then, é'[m] is defined to be the closure of 6[m], and
o[m] is said to be closed if 3[m] = 6'[m]. Naturally,
the closure of a consistent decision-mapping is closed.

Example 4. Referring to Example 2, the closure of
decision-mapping 6, [m, ], ) [m,], follows Definition
4. Domain m, is the union of set m, and the set
of materials involved in the operating units, ie.,
m; =m; U {B,C, F,G}. Hence 6;[m,] = {(4,{({D},
CA.B))})(B.{({D}. {4.B})}), (C.{({F.G},{C.D})}),
(D,’(}{F,G},{C,D}),({G,H}, {D})}).(F.0).(G,0),
(H,0)}.

An important relation of a decision-mapping and
its closure are expressed by the following theorem.

Theorem 2. Let 3'[m] be the closure of consistent
decision-mapping 3[m];, then, 5(X)= 6'(X) for all
Xe m,ie 6[m] is the restriction of §[m] to m.
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Theorem 2 implies that if 6'[m] is the closure
of consistent decision-mapping é[m], then, é[m] =
&’'[m]. Tt is essential to inquire if the closure preserves
the consistency.

Theorem 3. The closure of a consistent decision-map-
ping is consistent.

The equivalence of decision-mappings can be estab-
lished on their closure as stated in the following
definition.

Definition 5. Two consistent decision-mappings are
defined to be equivalent if their closure is common.

Naturally, a consistent decision-mapping is equiva-
lent to its closure. The relation “equivalent™ has the
mathematically required properties of an equivalence
relation: It is reflexive, symmetric, and transitive.

Example 5. Decision-mapping 3,[{B,D}] = {(B.
{({D},{A, B}.D.{({F.G},{C.D}).({G, H}.{D})})}
has the same closure as 4, [m,] in Example 2; there-
fore, they are equivalent.

The restriction of a consistent decision-mapping
is often equivalent to itself; nevertheless, this is not
always the case. The definition given below serves to
examine if a restriction preserves the equivalence.

Definition 6. m’ is said to be an active domain of
decision-mapping d[m] if m' =m, op(d[m'])=
op(8[m]). and op(d[m']) = op(é[m]).

Note that m is always an active domain of deci-
sion-mapping é[m], and that a decision-mapping can
have multiple active domains. It is sufficient, however,
to define a decision-mapping on any of its active
domains as stated in the following theorem.

Theorem 4. Let 6[m] be a consistent decision-map-
ping. Then, it is determined on its whole domain, m, if it
is given only on one of its active domains.

According to the next theorem, it is sufficient to
examine the consistency of a decision-mapping on any
of its active domains.

Theorem S. If a decision-mapping is consistent on one
of its active domains, then, it is consistent.

If a consistent system of decisions is incomplete in
synthesizing a process, the additional decisions should
be made by preserving its consistency. The following
definition formalizes this requirement as an extension
of a decision-mapping.

Definition 7. Let 6,[m,] and &,[m,] be consistent
decision-mappings, with their closures, d;{m,] and
&5[m,], respectively. Then, &,[m,] is defined to be an
extension of d,[m,] if

(i) m; =2 m,,
(i) d5[m,;] is the restriction of 5,[m;] to m,, ie.
my; 2 m, and 0,(X) = 4,(X) for Xe m,, and
(ii) 81(X) =2 65(X) for Xe m,y/m,.

F. FRIEDLER et al.

Fig. 3. P-graph of decision-mapping &s[m; v {C}].

That 8, [m,] is an extension of §,[m,] is denoted by
8,[my] > 6,[m,]. Naturally, the closure of a consis-
tent decision-mapping is its extenston.

Example 6. Decision-mapping ds[m; v {C}] =
3,Im 1w {(CAUE, FY.{C)L({F.G},{C,D})})} is an
extension of decision-mapping &;[m;] because it
satisfies every requirement stated in Definition 7. The
P-graph of decision-mapping 8s[m, v {C}] is given
in Fig. 3.

A major property of relation extension is expressed
by the following statement.

Theorem 6. Relation extension is a partial order on the
set of consistent decision-mappings.

4. REPRESENTATION OF A PROCESS GRAPH BY
DECISION-MAPPING

With the necessary tools in hand, the relationship
between the P-graphs and decision-mappings can
now be examined. Let P-graph {m,0) be a specific
subgraph of P-graph (M,0); then, mc M, 0 < O,
O pM)xp(M), and 0 & p(m)x @(m). Let us
assume that m = mat(o).

Definition 8. m' is an active set of P-graph (m,o), if
m < mand fm # 0 for any (, 8)e o.

Thus, at least one output material of each operating
unit of P-graph (m,0) is represented in its active set.
Naturally, set m is active if, for any («, B)€ o, 8 # 0;
conversely, P-graph (m, 0) has no active set if there
exists (a, f)€ o such that 8 = 9. This type of operating
units has no practical value; thus, we suppose that
B # O for any operating unit (2, §).

Definition 9. Let m' be an active set of P-graph
(m, 0); then, 6[m’] is defined to be a decision-mapping
of P-graph (m,0), if é[m]={(X.Y)|Xem' and
Y={(p)(p)eo and Xe p}}, ie if 6(X)=
{(e, B) (2, BYe 0 and X e B} for Xe m'. Since m’ is an
active set, o = op(d[m’]).

Example 7. Again referring to Example 2, both
{A.D.H} and {B, C.D,H} are active sets of the
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P-graph given in Fig. 2. For these active sets,
6'[{A4,D,H}] = {(A.{({D}.{4,B})}),(D,{({F,G},
{C.D}),({G,H},{D})}).(H,0)} and §"[{B,C,D,H}] =
[(B,{({D}. {4, B})}).(C.{({F, G}, {C,D})}).(D,
{({F,G},{C,D}),{{G,H},{D})}),(H,9)} are two deci-
ston-mappings of this P-graph. Since they have identi-
cal closure, these decision-mappings are equivalent.
The following theorems need be proved, however, to
demonstrate that it is the case in general, ie. the
different decision-mappings of the same P-graph are
always equivalent.

Theorem 7. The decision-mappings of P-graph (m, o)
are consistent.

If the decision-mapping of a P-graph is given on the
entire set of materials, then it is closed as stated in the
following theorem.

Theorem 8. Decision-mapping 6[m] of P-graph (m, o)
is closed.

The connection between the active set and active
domain is expressed as a theorem as follows:

Theorem 9. Active set m’ of P-graph (m, o) is an active
domain of its decision-mapping d[m}, if op(6[m']) =
op(é[m]).

Since a P-graph may have multiple active sets, it
may also have different decision-mappings. The prin-
cipal question whether these decision-mappings are
equivalent, is answered by the following theorem that
ensures the validity of Definition 9.

Theorem 10. The decision-mappings of P-graph (m, o)
are equivalent provided that m = mat(o).

Let us suppose that part of a process has been
designed or it is temporarily assumed when synthesiz-
ing a process, e.g. a substructure is given by a deci-
sion-mapping. Then, the remaining part should be
described in accordance with the previous decisions.
The definition given below formalizes this require-
ment.

Definition 10. Let P-graphs o, = (m,,0,) and
g, = (m3,0;) be given, where m, = mat(o,), m, =
mat(o,;), my = M, my S M, 0, €0, and 0, = O. Let
d,[m}] be a decision-mapping of ¢,. Then, o, is said
to be an extension of g relative to &,[m}] if there
exists a decision-mapping 3,[m5] of &, such that
8;[m>] > 6, [mi].

Since the same structure may have different deci-
sion-mappings, the extension of a structure may de-
pend on the particular decision-mapping considered.
For example, both §,[m,] and 4[m; v {C}] =
S [m]u {(C,({F,G},{C,D}))} are decision-map-
pings of the P-graph given in Fig. 2; nevertheless,
deciston-mapping d5[m; v {C}] of Example 6 is the
extension of &,[m,], but it is not the extension of
d¢[m; v {C}].

Theorem 11. Let 6[m'] be a consistent decision-map-
ping; o =op(6[m’]); and m = mat(o) U m’. Then,

1759

(i) (m, 0) is a P-graph, (ii) m' is an active set of P-graph
(m, 0), and (iti) 6[m’] is a decision-mapping of P-graph
(m,0).

This theorem suggests the definition for the
P-graph of a decision-mapping.

Definition 11. The P-graph of consistent decision-map-
ping 8[m'] is defined to be (m,0) where 0 = op(é[m'])
and m = mat(o) U m'.

The following two theorems establish this defini-
tion.

Theorem 12. Let $[m’] be a consistent decision-map-
ping and (m, 0) be its P-graph. If m" is an active domain
of 6[m'], then m" is an active set of (m,0).

Theorem 13. Equivalent decision-mappings have the
same P-graph.

A path in a decision-mapping can analogously be
defined as a path in a P-graph. Since this term has
a special significance, it is explicitly defined below.

Definition 12. Let Y,c op(6[m]) and X,e mat{op
(6[m])); then, there is a path between operating unit
Y, and material X, in decision-mapping 6[m] if and
only if there exists a sequence Yy, X;, 12, X5,..., 1, X,
such that Yed(X;) (i=1,2,...,n) and X;e mat"
({Yi+1}) =1,2,...,n— 1) where mat™™ determines
the set of input materials for a set of operating units.

Example 8. A path exists between operating unit
({G,H},{D}) and material A in decision-mapping
é,[m,] in Example 2, since we have sequence
({G.H},{D}), D, ({D},{A, B}), A, which satisfies the
requirements of Definition 12 (see Fig. 2).

5. DECISION-MAPPINGS AND THE COMBINATORIAL
AXIOMS OF PROCESS SYNTHESIS

The MINLP model of a process synthesis problem
gives rise to difficulties of both combinatorial and
continuous nature even though they are not totally
independent of each other. While several methods are
available for mitigating the difficulties of the continu-
ous nature, this is not the case for the difficulties of the
combinatorial nature. To develop an exact and effi-
cient algorithmic or mathematical programming
method for process synthesis, therefore, it is necessary
to comprehend the major combinatorial properties of
process structures; moreover, these properties should
be taken into account in search for the optimal pro-
cess structures.

Suppose that sets P,R, and O are known for set
M of materials given, where P is the set of products,
R is the set of raw materials, and O is the set of
operating units. The relation among these sets can
be expresssd as P<cM, RcM, PnR=0,
MO =0 and O < p(M)x p(M). Triplet (P,R,0)
defines a synthesis problem, if none of sets P, R, and
O is empty. The process structures for synthesis prob-
lem (P,R,0) are the subgraphs of P-graph (M, 0);
however, the P-graph of a feasible process must al-
ways conform to certain combinatorial properties.
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These properties have been expressed as a set of
axioms; moreover, P-graphs satisfying these axioms
are defined to be the solution-structures of the syn-
thesis problem [Friedler er al. (1992¢), also see Appen-
dix B for a brief summary].

The axioms of process synthesis can also be
expressed by the help of the decision-mapping. This
form is advantageous in developing algorithms for
process synthesis.

Definition 13. Let m be a subset of M for P-graph
(M, 0) and let 3[m] be a consistent decision-mapping.
Then, 6[m] is defined to be a combinatorially feasible
deciston-mapping of synthesis problem (P, R, 0) if it
satisfies the following axioms.

(D1) P < mat(op(8[m])).

(D2) For any xe mat(op(d[m])),d(x) =0 if and
only if xe R.

(D3) If oe op(é[m]), then an xe P exists such that

there is a path from o to x in 6[m].

It can be proved that a decision-mapping is combi-
natorially feasible if and only if its P-graph is a solu-
tion-structure of (P, R, 0). On the other hand, for any
solution-structure (m, 0), its decision-mapping é[m] is
combinatorially feasible. Thus, Definition 13, together
with Definition 11, results in a description of the
solution-structures of synthesis problem (P, R, O).

F. FRIEDLER et al.

6. APPLICATION OF DECISION-MAPPINGS FOR THE
COMBINATORIAL ALGORITHMS OF PROCESS
SYNTHESIS

Fundamental combinatorial algorithms have
been developed through the decision-mapping. Such
algorithms include those for the generation of the
super-structure (maximal structure) and the set of

Fig. 5. Maximal structure of Example 1.

input: M, P, R, A[M];

global variables: R, A[M];

begin

il P = @ then stop;
SSG(P, @, 2)

end

procedure SSG(p, m, 8[m]):
begin

return end
let xe p;
C:= pA)M3};
for all ce C do
begin

then
begin

end
end
return
end

comment: P, R, A[M] belong to synthesis problem (P, R, O), where

PcM, RcM, PR =&, A(x) = {(et, B)I(c, B)e O & xe B}, A(x) =D < xeR,
A[M] = {(x, A(x))|xe M}, §[m] is a decision-mapping on (M, O);

output: all solution-structures of synthesis problem (P, R, O);

if p =& then begin write §[m]; comment: 8{m] defines a solution-structure;

if Vyem, cnd(y) = @ & (A(x)\c)d(y) =

S[mu{x}]= §[mjui(x, 0)};
SSG(pumatin (c)(RumU{x}), muix}, S[mu{x}])

Fig. 4. Algorithm SSG for generating the solution-structures of a synthesis problem.
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Table 1. Recursive steps of algorithm SSG in generating the solution-structures of Example 9

Number Depth of  Parameter Parameter Parameter

of call recursion p m 6[m] Remark
1 0 {4} 0 ] Initial call
2 e (A} (A
3 2 {F} {A.C} ((A,il 1(C, {3}))
4 3 (0] {A,C.F} ’[ )(C {3 (F. {1}) Solution #1
5 3 (1] {A,C,F} ‘1‘ C, {3}),(F, {], ) Solution #2
6 2 WF} {4.C} ,\1})(C {4h}
7 30 {4.C.F} {(A, {L(C {4 F. 1)) Solution #3
8 3 0 {4.C, F} {(A {1 (C,{4}),(F.{1,6})} Solution #4
9 2 (R (4.0} HAIDC (3,41}
10 3 0 {A.C,F} 1(A 1)).(C, {3,410, (F. {1})} Solution #5
11 3 0 {4,C.F} A, {1}),(C, 13, 4}),(F,{1.6})} Solution #6
12 Y (4} A2
13 2 (R (4.D) {4, 2D 48]}
14 3 0 {A.D, F} {4, {2}).(D,{4}).(F.{6})} Solution #7
15 2 ({H) {4,D} (4. (2).(D.{5))}
16 3 () {A,D,H} A, 2D, {5} ) (H,{7})} Solution #8
17 2 {F,H} {A, D} {4, {2})(D, {4, 5\)}
18 3 {H} {A,D,F} {(A4,{2}).(D,{4,5}).(F, {6})}
19 4 (1] {A,D,F,H} 1A, 21),(D,{4,5)).(F.{6}).(H,{T})} Solution #9
20 1 {C.D} {A} {(A,{1,2‘)}
21 2 {D.F} {A,C} AL 200G, 3D}
22 3 (F.H} {4.C,D} 1AL {1, 2‘)((‘ (3D, {51}
23 4 {H) [ALCDF) A {L2)UC B)LD. (S}LF. (1))
24 5 0 {AC,DF HE (A (L 210(C B30D, {51).(F, {1, (H,{7})} Solution # 10
25 4 {H} {4.C,D,F} AL 20D(C, {3 D {5}).(F.{1,6})}
26 5 0 {A,C.D,F.H} {(A, {1, 7})(C {30,(D, {5})(F,{1,6}).(H,{T})} Solution # 11
27 2 (DF) 14,0} {4 {1.20C )
2 3F {A4.C.D) [(A,{1.2)).(C, {41,(D, 1a})
29 4 (1] {A,C.D.F} { AL2N(C, 141)(D {Ah(F, {11} Solution #12
30 4 1] {A,C,D,F} AL 2D.(C 40D, {4, (F, {1,6}1)} Solution #13
31 3 {F,H} {A,C,D} (A, {1, }),(C,{4‘)(D {4,51)}
32 4 {H} {A.C.D,F} ({4 {L2})(C.{4}).(D.{4.5}).(F. {1}
33 5 0 {A,C.D,F,H}  {(A,{1,2})(C.{4}).(D. 14, 5}).(F,{1}),(H, {7})} Solution # 14
34 4 {H} {A,C,D, F} HA L 2),(C, {4)),(D, {4, 51),(F, {1,6})}
35 5 0 {A,C.D,F.H} {(A,{1,.2),(C,{4}),(D,{4,5})(F,{1,6})(H,{7})}  Solution #15
36 2 (D, F} [A,C} {A, {1,2),(C.{3.4})}
37 3 {F} {A,C,D} HA L 21),(C, {3,4)).(D, {41)}
38 4 (4} {A,C.D,F} AL 2D0C, {3,41).(D, 141, (F. {11} Solution # 16
39 4 0 {A.C,D.F} {(4,{1.21).(C, {3, 41) D, {4, (F,{1,6})} Solution #17
40 3 {F.H} {A.C,D} {(A,{1,21),(C, {3.4}),(D,{4,5})}
41 4 {H) {4.C.D,F} 1A {1, 20,(C, (3,41, (D, {4, 53 (F, {1}) }
42 5 (1] {A,C,D,F,H} {(A,{1,2}1(C,{3,4).(D, {4, 5}).(F.{1}),(H,{7})}  Solution #18
43 4 {H} {A.C,D,F} {(A AL 21 (C.{3,41).(D, {4,5}),(F, {1,6})}
44 S 0 {A,C,D,F,H}  {(4,{1,2})(C, {3,40),(D,{4,5}),(F,{1,6}),(H,{7})} Solution #19

solution-structures (Friedler et al., 1992a, 1993). These
algorithms, in turn, have given rise to the so-calied
accelerated branch and bound algorithm of process
synthesis that is highly efficient (Friedler et al., 1990;
Friedler and Fan 1993a,b). This accelerated branch
and bound algorithm not only is mathematically veri-
fiable but also effectively minimizes the number and
sizes of the subproblems to be solved for generating

the optimal solution. The decision-mapping and the
resultant algorithms manipulate process structures
explicitly; hence, the user’s decisions can be incorpor-
ated interactively into the algorithmic decision pro-
cedure of process synthesis.

For illustration, let us consider algorithm SSG for
generating the solution-structures of synthesis
problem (P, R,0). This procedure is given in Fig. 4
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Fig. 6. Solution-structures of Example 9 generated by algorithm SSG.




Table 2. Operating units of Example 10

No. Type Inputs Outputs

1. Feeder Al A5

2. Reactor A2, A3, A4 A9

3. Reactor A3, A4, 46, A11 Al0

4. Reactor A3, A4, A5 Al12

5. Reactor A3, A4, A5 Al13

6. Reactor A7,A48, A14 Alé

7. Reactor A8, A14, 418 Alé

8. Separator A9, Alt A21,A422, 424

9. Separator Al10,A11 A22,A24, A37
10. Separator A12 A25,A426
1. Separator Al13 A2S, 431
12, Dissolver AlS5, 416 A32
13. Reactor Al4,A17, A18, A19, 420 A33
14. Reactor A6, A21 A3S
15. Washer A22,A423 A48
16. Washer AS, A24 A36
17. Separator A5, A1, 425 A37, 438, 439
18. Separator All, 426 A40, 442
19. Reactor Al4, 427, 428, 429, A30 A41
20. Separator All, 431 A40, 442
21. Centrifuge A32 A44, A45
22 Washer A33,434 A46
23. Separator A36 Al4, 448
24, Separator A38 Al4, 448
28. Filter A41 A50, 451
26. Washer A43, A44 AS3
27. Filter A46 AS5S5, A56
28. Separator A47. 448 A5, AST
29. Separator A48, 449 AS, AS8
30. Separator AS0 A59, 460
31 Dryer AS51,454 A6!
32 Dryer AS2, 453 A6l
33 Dryer AS54, 455 A61
34. Distillation AS9 A62, 463
35. Separator A60 A64, 465

A6l

A27 A28 A29 A30

Fig. 7.

Maximal structure of Example 10.
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Table 3. Recursive steps of algorithm SSG in generating the solution-structures of Example 10

Number Depth of Parameter Parameter Parameter
of call recursion p m 8[m] Remark
1 0 1461} 0 0 Initial call
2 1 1AS1} 1461} {(A461,{31})}
3 2 {A4L} 1A51, 461} {(A51,125}),(461, {31})}
4 3 {A14} {A41, AS1, 461} {{A441,{19}),(451,{25}),
(A61,{31})}
5 4 {436} (A14, 441, 451, A61) {{A14,{23}),(441,{19}),
(A51,125}),(461,{31})}
6 5 {45,424, {A14, 436, A41, A51, 461} {(A14,{23}),(436,{16}),
(A41,{19}),(451,{25}),
(A61,{31})}
7 6 {A5, 49} 1A14, 424, A36, A41, {(A414,{23}),(424. {8}),
AS51.A61} (436, {16}),(A441,{19}),
(A51,{25}).(461,{31})}
8 7 {A5} {A9,A14, A24, A36. {{A9.{2}),(A414,{23}),
A41,ASt, A61} (A24,{8}),(436,{16}),
(A41,{19}).(A51,{25}),
(461,131})}
9 8 0 (A5, 49, 414, A24, 1(A45,{1}),(49, {21), Solution # 1
A36, A41, A51, 461} (A14,{23}),(424, {8}).
(A36,{16}),(A441,{19}),
(A51,{25}),(461,{31})}
10 8 {448} 1A5, A9, A14, A24, A36, (AS,{281),(A49,{2}),
A41, AS1, A61} (A414,1{23}),(A424, {8}),
(436,{16}),(441,{19}),
(A51,{25}),(A461, {311}
11 9 0 {A5,A49, A14, A24, {(A5,{28}),(49,{2}), Solution #2
A36, 441, A48, (A14,{23}),(A24,{8}),
A51, A61} (A36,{16}),(441,{19}),
(448,123} ).(A51,{25}),
(461,{31})}
12 9 {A22) A5, 49, A14, 424, 1(A5,{28}).(A49,{2}), 24 ¢ 6(A14)
A36, A41, A48, (A14,123}).(A424,{8}),
ASL, A6t} (A36.{16}).(441,{19}),
(A48,{15.23}),(A451,{25}),
(461, {31}}}
13 10 0 1A5,49. A14, 422, {(A45,{28}),(49.{2}), Solution #3
A24. 436, A41, A48, (A14,{23}),(422,{8}),
451,461} (A24,18}),(A436,{16}).
(A441,{19}),(448,{15,23}),
(A51,{25}), (461, {31})}
34 6 {A5,410} {414, 424, 436, A41, {(A14,{23}),(424,{9}),
AS51, A6t} (A36,{16}).(441,{19}),
(A51,{25}).(461,{31})}
35 7 {A5} {A10,414, A24, A36,

A41, 451, 461}

{(A10.{3}),(414,{23}),
(A424,{9}),(436, {16}),
(A41,{19}).(451,{25}),
(A61,{31})}
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Number Depth of Parameter Parameter Parameter
of call recursion |4 m éfm] Remark
36 8 ] {AS, 410, A14, 424, {(AS,{1}),(A410,{3}), Solution # 14
A36, A41, AS51, A61} (A14,{23}),(A424,{9}),
(A36,{16}),(441,{19}),
(A51,{25}).(461,{31})}
37 8 {A48} {A5, 410, A14, 424, {(AS,{28}), (410, {3}),
A36, 441, A51, A6t} (A14,{23}),(424,{9}),
(A36,{16}),(441,{19}),
{A51,{25}),(461,{31})}
38 9 0 A5, A10, A14, A24, {(A45,{28}),(A410,{3}), Solution #15
A36, A41, A48, (A14,{23}),(A24.{9}),
451, 461} (A36,{16}),(A441,{19}),
(A448,{23}),(A51,{25}),
(A61,{31})}
89 4 {438} {A14, A41, A5L, A61} {(A14,{24}),(441,{19}),
(A51,{25}),(461,{31})}
537 1 {453} {461} {(A461,{32})}
8007 21 {48} {AS, A9, A10, A12, {(45,{1,28,29}),(A49,{2}), Last but one
A13, 414, A16, A22, (A10,{3}),(412,{4}), call
A24, 425, A32, A33, (A13,{5}),(A414,{23,24}),
A36, 438, A41, 444, (A16,{6,7}),(422,{8,9}),
Ad6, A51, A53, (A24,{8,9}).(425,{10,11}),
ASS, A61} (A32,{12}),(433,{13}),
(A36,{16}),(438,{17}).
(441, {19}),(444,{21}),
(A46, {22}),(A51,{25}),
(A53,{26}),(A455,1{27}).
(A461,{31,32,33})}
8008 22 (1} {A5, A9, A10, A12, {(A5,{1,28,29}),(A49,{2}), Solution
A13,A14, A16, 422, (A10, {3}).(412,{4}), # 3465
A24, A25, 432, A33, (A13,{5}),(A14,{23,24}),
A36, A38, 441, A44, (A16,{6,7}),(A22,{8,9}),
A46, A48, A51, A53, (A24,{8,9}),(A425,{10,11}),
AS5S, A61} (A432,{12}),(A433,{13}),

(436, {16}),(438,{17}),
(441,{19}),(444,{21}),
(A46,{22}),(A48,{15,23,
241),(A451,{25}),(453, {26}),
(A455,{27}),(461,{31,32,33})}

(Friedler et al., 1992a), it generates each solution-
structure of a synthesis problem exactly once; more-
over, it generates only the solution-structures. This
method can be validated rigorously by resorting to

the theory of decision-mapping.

Example 9. For set M, of materials and set O; of
operating units given in Example 1, let P, = {4} be
the set of products and R, = {E,G,J, K, L} be the set
of raw materials. Algorithm SSG requires the so-

called maximal structure of the problem as its input
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(see Appendix B). This maximal structure, given in
Fig. 5, has been created by algorithm MSG (Friedler
et al., 1993). Algorithm SSG generates the decision-
mappings of the solution-structures recursively; the
“values™ of the parameters for each recursive step is
listed in Table 1. Note that the number and order of
calls and the order of the generation of the individual
solution-structures may be effected by the imple-
mentation of algorithm SSG, nevertheless, the set of
solution-structures is obviously invariant for the
implementation. During the generation of solution-
structures, the decision-mapping in the third para-
meter of algorithm SSG represents a solution-struc-
ture if the first parameter of algorithm SSG, set p, is
empty. It occurs nineteen times in solving this
example, thereby resulting in 19 solution-structures,
as illustrated in Fig. 6.

Example 10. Let us now consider solution-structures
of an industrial process synthesis problem. For this
purpose the process synthesis problem introduced
in Friedler et al. (1992a) is re-examined again. In this
problem set M of materials has 65 elements,
M = {A1,42,...,465}, where R = {41, A2, A3, A4,
A6, 47, A8, A11, 415, A17, A18, A19, A20, A23, A27,
A28, 429, A30, A34, A43, A47, A49, A52, A54} is the
set of raw materials. Moreover, 35 operating unjits are
available for producing the product, material A61;
these operating units are listed in Table 2. The maxi-
mal structure of the problem is given in Fig. 7. The
recursive steps of algorithm SSG in generating the
solution-structures of this example are listed in Table
3. For instance, the first solution-structure in Table
3 is composed of operating units 1, 2,8, 16, 19,23, 25,
and 31 of the maximal structure.

In addition to being a fundamental algorithm of the
accelerated branch and bound algorithm, algorithm
SSG is also capable of directly generating the math-
ematically valid disjunctive normal form for synthesis
problems to serve as the inputs of synthesis methods
based on logical formulation [see e.g. Raman and
Grossmann (1993)].

7. CONCLUDING REMARKS

A novel mathematical notion, decision-mapping,
has been introduced to render the complex decision
systems of process synthesis consistent and complete.
The major properties of decision-mapping have been
identified and proved; moreover, its relationship to
P-graphs has been established. The application of
decision-mapping is illustrated by generating the
solution-structures of an industrial process synthesis
problem. The result indicates that it is highly efficient,
exact, and useful.
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NOTATION

d (X) indegree of vertex X, ie. the number
of arcs with endpoint X

f(x) “value” determined by the mapping
or function for an element of the do-
main, x

iff if and only if

(m,0),(M,0) P-graph

m, M set of materials

mat set of materials involved in a set of
operating units

mat™® set of input materials for a set of oper-
ating units

0,0 set of operating units

op operating units of decision-mapping

P set of products

R set of raw materials

(P,R,0) synthesis problem defined by the spe-
cific set of products (P), raw materials
(R), and operating units (0}

S(P,R,0) set of solution-structures for synthesis
problem (P, R, 0)

[yeyi] path in P-graph

fID] mapping or function, where f is the

Greek letters
u(P,R,0)

mx W ayg ® g S

——

in

m —
vcommT

name, D is the domain of the mapping
or function

maximal structure for the synthesis
problem (P, R, O)

P-graph

maximal decision-mapping
decision-mapping

complement of decision-mapping o

athematical symbols

empty set

power set

for any

there exists

Cartesian product

set

cardinality of a set

set difference

(proper) subset or subgraph
element

not an element

intersection of sets or graphs
union of sets or graphs
extension defined on decision-map-
pings
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APPENDIX A: PROOFS OF THEOREMS
Proof of Theorem 1. Obviously, A(X) = §(X)u é(X) and

A(Y) = 3(Y) U 5(Y); hence,
AX) N AY)Y=(B(X)n (X)) UB(X) A E(Y))
X)) UEB(X) N S(Y)). (Al
U 3X)nd(Y)=0 for all X,Yem, ie. 5(X)n

8(Y) =0, then, A(X) N A(Y) =
N 6(Y)) from expression (Al).
(i) Conversely, let us suppose that (§(X) nd(¥)) u (5(X)
N 6(Y)) = A(X)nA(Y) for_any X,Yem. Since
((6(X) n 8(Y)) U (8(X) n J(Y)) n (8(X) N 3(Y))
= and ((3(X) n 3(Y)) U (5(X)  8(¥))) 6<X)
8(Y) =0, we have 3(X)né(Y)=9¢ and §(X)nr
5(Y)=

(3(X) N (X)) U (B(X)

@ from expression (Al).

Proof of Theorem 2.

(i) For X em,0(X) = {{a. )l (x.f)ed(X)and X € f} <
{{e, B)| (e, B) € 0 and X € B} = &'(X).

(i) Suppose that there exists an (x, f) for X € m such that
(v,f)eo, Xep, and (o f)¢(X). Consequently,
(e, f)e &(X), and there exists Yem such that
(o, BYe 8(Y), i.e. 3(X) n 3(Y) # 0 in contradiction to
6[m] being consistent. Thus, (x, ) € 3(X) and §(X) =
{(e. )| (. )€ 0 and X € B} = 5'(X).

Proof of Theorem 3. Let 6[m] be the closure of consistent

decision-mapping é[m]. Naturally, m = m.
(i) For Xem, 6(X)=248(X);, thus,
X,Yem, then, 3(X)n &'(Y) = 9.

(ii) Suppose that m/m # 0, and let X e m and Y e m/m.

Then, ¢'(X)nd'(Y)= X)) {(a,B) (o, B)e0 and

YEﬁ}CLSX)F\O"O(X)('\( ZEMB(Z))=UZEM

if |ml=1 and
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((X) " 8(Z)) = 0; thus, 6(X) &' (Y)=¢. On the
other hand, since (YY) <= A(Y), 8'(X)nd(¥)=
3(X) A (A(Y)/3(Y) = 8(X) A A(Y)/8(X) ~ 6'(Y).
Nevertheless, 8(X) N A(Y) = 8(X) n {(¢, f) {2, f) € O
and Ye f} = {(af)|(x,f)e é(X)and Ye B}, 5(X)n
3(1) = 800 b [y ) € o and Y e 7Y~ {(a.P)
|{e, B) € 6(X)and Y € B}; consequently, 5(X) n A(Y) =
3(X) n 8'(Y), and eventually, 6'(X) n d'(¥Y) = 0.

(iii) For X,Yem/m, it can be similarly proved that
8(X)n & (Y) = ¢ provided that jm/m| > 1.

Proof of Theorem 4. Let m’ be an active domain

of consistent decision-mapping é[m], and also let Y e m/m'.

(i) Obviously, 8(Y) S ({Jxem (X)) = ({Jxem (X)) and
Y) = A(Y); thus,

Y)Y A(Y) A (U (S(X)

Xem’

U (A(Y) n S(X)).

Xem’

(i) Since 8[m] is consistent, (3(X) N S(¥Y)) LX)
HY)) = A(X)n A(Y) for any X em'. The inter-
sections of both sides of this equation with set 3(X)
result in

S(X)n 3(Y) = (AX) A 5(X)) A A(Y).

This can be rewritten as 5(X ) N 5(Y) = 6(X) n A(Y). Obvi-
ously, 3(Y)28(X) n 8(Y) = d(X)n A(Y) for any X em’;
hence,

dY)=2 | (0(X)n A(Y)).

Xem’
(i) From (i) and (ii), we have

3IX) = | (A(¥Y)n3(X)) = op(d[m']) n A(Y).

Xem

Note that this is the formula for determining (Y) for any
Yem/m'.

Proof of Theorem 5. Let m’ be an active domain of decision-
mapping é[m], and (X}~ 5(Y) =P for all X, Yenr.

W) If Xem and Yem/m, then by op(é[m'])=

p([m]), 5(X) N 8(Y) = 5(X) 0 (A(Y) n{ U 5(Z)>> =

Zem'

A(Y) N ( U 62) nox

Zem'

))>=A(Y)ﬁ0:0.

Similarly, by
op(6[m']) = op(3[m]),

S(X)n (V)< 6(X) (A(Y)n( U 5’(2)))

Zem’

= A(Y) n( U 6 n 5(2))) =AY)n0=0.

Zem'

(ii) Suppose that [m/m’| = 2 and let X, Y € m/m'. Then,

XY S(Y) = AX) (U 5(2)
Zem'

~A(Y) r\( U 5‘(U)) = A(X) N A(Y)

Uem’
Z,Uem'

Proof of Theorem 6. The reflexivity of relation extension is
satisfied trivially. The antisymmetry will be proved at the
outset. Let §,[m,] and &,[m,] be consistent decision-map-
pings with closures 8} [m,] and §;{m,], respectively. More-
over, let us suppose that &,[m;]> d,[m,] and
3,[m,] > &,[m,]. Then, from the definition of extension, we
have m; 2m,;, m, =2m,, m; 2m,, and m; 2m;, 1e.
m,; = m, and m, = m,; therefore, §,(X) = ,(X) for X € m,.

Z) S(U))) =AX)NAT)ND=0.
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The proof of tramsitivity follows. Let us suppose that
8,[m,] > d,[m,] and 8,[m,] > 5;[m;]; then, we need to
prove that 6,[m,] > d3[m3]. The first and second condi-
tions of extension are satisfied, since the relations “subset”
and “equal to” are also transitive. From &,{m,] > é,[m;],
81(X)=38,(X), 6,(X)=0%X) for Xem, and
31(X) 2 065(X) for X em,/m,. Hence, §/(X) 2 §52(X) for
Xem,. §,[m;]>8;[m;); hence, 83(X)=24d3(X) for
X e m3/m;. Thus, we have 61(X) 2 85(X) for X e my/mj.

Proof of Theorem 7. Let m’ be an active set of P-graph (m, o),
and suppose that [m’| = 2 moreover, let X and Y be ele-
ments of m’. If A(X) ~ A(Y) = §, then, §(X) n 8(Y) = 0. Let
us suppose that A(X) n A( Y) # 0 and let (z, f) be an element

of A(X)n A(Y), then, X,Yeﬂ If @p) eo then,
(.)€ 8(X) and (x,B)e d(Y), ie. (2, B)ed(X)n oY) If
(2, B) € o, then, (2, B) ¢ 5(X), (o, B) € 6(X), and a e o(Y),

thus, (&, B) € 6(X) N (Y.

Proof of Theorem 8. Let o{m]={(X,Y)|Xem and

={(o,M)}(x,B)e o and X € B}} be the decision-mapping
of(m 0) on m. Since m is an active set, UXS,,,O(X) =0,0=0,
and for P-graph (m, 0), | . greola v f) = m; thus, m = m and
&' [m] = é[m].

Proof of Theorem 9. Let 6[m] be a decision-mapping and m’
be an active set of P-graph (m,0). Then, for any (x,fB)€o,
there exists an X em such that (o, f8)e 8(X); thus,
0 =|Jxem 0(X). Since m =m, we have |y d(X)c
UxGmﬁ(X =0. Thus, | Jxem 0(X) = UXG,,‘(S(X) The as-
sumption, op(§[m']) = op(8[m]), implies that m' is an active
domain of 6[m].

Proof of Theorem 10. By Theorems 7 and 8, decision-map-
ping 6[m] of P-graph (m, 0) is consistent and it is also closed.
Let us suppose that there exists another active set m, of
P-graph (m,0), then, by Theorem 7, decision-mapping
0, [m,] of P-graph (m, o) is consistent. Since m, is an active
set of (m,0), 0 = op(d,[m;]). Then, by the assumption that
m = mat(o), the closure of 3, [m,] is equal to the closure of
6[m]; thus, they are equivalent.

Proof of Theorem 11.
(@) mno=0and o = @(m) x ¢ (m) are trivially satisfied,
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(ii) From the construction of o, it follows that m’ is an
active set of P-graph (m, o).

(iii) &[m'] is a decision-mapping of P-graph (m, 0): For all
X em,8(X) < {(«B)eoand X € B} follows from the
construction ofo the equality also holds, since 6[m']
is consistent.

Proof of Theorem 12. Let 4[m'] be a consistent decision-
mapping; m” be an active domain of é [m’]; and (m, o) be the
P-graph of 6{m']. Since m” is active domain of d[m’],
0 = Uxem 8(X) = {xem 6(X). Thus, for all {x, #) € o, there
exists X € m” such that {«, #) € 6(X ), 1.e., f N m”" is not empty.

Proof of Theorem 13. Let §,[m,] and §,[m,] be two equiva-
lent consistent decision-mappings. By definition, they share
a closure thus 0y = UXlsml I(X UXZemz 52(X2) =03
It follows that the material sets constructed according to
Definition 11 are also identical.

APPENDIX B: FORMAL DEFINITIONS OF PROCESS
SYNTHESIS AND COMBINATORIAL PROPERTIES OF
FEASIBLE PROCESS STRUCTURES

Let M be a finite nonempty set of objects, usually mater-
ials. A synthesis problem is defined to be a triplet (P,R,0)
where P( < M) is a set of final products; R( = M) is a set of
raw materials (P 7 R = 0); and O < (@ (M) x @(M)) is a set
of operating units. This triplet determines a P-graph which is
defined by pair (M, 0) in the usual fashion. If (y;-,,¥;) is an
arc of the P-graphfori = 1,2,...,n, then [ yq,y,] is a path in
P-graph (M, O).

P-graph (m, 0) is a solution-structure of synthesis problem
(P,R,0) if it satisfies the following axioms:

(S1)y Pcm

(S2) VX em d (X)=0iff X e R;

(S3) 0= O

(S4) Vy, € 0, 3 path [y, y,], where y, € P;

(S5) VX em, I(a, B) € 0 such that X € (x U ).

The set of solution-structures of synthesis problem (P, R, O)
is denoted by S(P,R,0). P-graph u(P, R, 0) is defined to be
the maximal structure of synthesis problem (P,R,0) by the
following equation: u(P,R,0) = | Jses(r.r.0)0-



