

Determination of the Thermodynamically Dominant Metabolic Pathways

Choamun Yun,^{\dagger,∇} Tae Yong Kim,^{\dagger} Tengyan Zhang,^{\ddagger,\perp} Young Kim,^{\dagger,\bigcirc} Sang Yup Lee,^{\dagger} Sunwon Park,^{*, \dagger} Ferenc Friedler,[§] and Botond Bertok[§]

[†]Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Korea

[‡]Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States

[§]Department of Computer Science, University of Pannonia, Egyetem u. 10, Veszprem, H-8200, Hungary

^ODepartment of Thermal Systems, Korea Institute of Machinery and Materials, Daejeon 305-343, Korea

Supporting Information

ABSTRACT: An effective strategy comprising two phases is proposed to determine the thermodynamically dominant pathways in a metabolic network of a given phenotype, involving several metabolic reactions. In the first phase, stoichiometrically feasible metabolic pathways are exhaustively identified through the flux balance analysis and the graph-theoretic method based on P-graphs. In the second phase, thermodynamically dominant pathways are selected from these stoichiometrically feasible metabolic pathways on the basis of the Gibbs free energy change of reaction. The proposed strategy's efficacy is demonstrated by applying it to two *E. coli* models: one is for maximal acetate and ethanol production, and the other is for maximal poly(3-hydroxybutyrate) production.

INTRODUCTION

Bio-based products are increasingly gaining worldwide interest as substitutes for petrochemical products to reduce the dependency on fossil fuels and to exploit their environmentally benign characteristics. For the efficient production of these bio-based products from the microorganisms, metabolic engineering is indispensable to render it possible for microorganisms to become suitable for such production.¹ Metabolic networks are adapted for the altered objectives in metabolic engineering with a variety of approaches to achieve the high-yield processes at lower costs.^{2,3} It is, however, rather convoluted to identify the engineering targets, because of the complex interactions of various components in metabolic networks. With the ever-growing information on the functions and phenotypes in metabolic networks, because of the technological advances, metabolic engineers are searching for increasingly effective tools that will facilitate the metabolic engineering of microorganisms through the systematic analysis and prediction of biological behavior. Metabolic flux analysis (MFA), among others, has contributed significantly to advancing metabolic engineering, based on the pseudo-steady-state assumption and linear programming (LP). By resorting to MFA, the overall reaction, or the overall mass balance of consumed nutrients, secreted metabolites, and byproduct, and the intracellular flux distribution can be observed for a given objective function (e.g., maximum target production).

For simplicity, metabolic flux analysis often neglects the fact that an overall reaction may be generated not from a unique pathway but from one of multiple possible pathways. Multiple pathways, however, are attainable through elementary flux modes or extreme pathway analysis,^{4,5} and are referred to as alternate optimal or equivalent pathways.⁶ Although these methods are well-known to be efficient and informative in handling smallscale metabolic networks, they are ineffective for generating the equivalent pathways of large-scale metabolic networks, because of the exponentially increasing combinatorial complexity of the networks.⁷ In the current contribution, the equivalent pathways of large-scale metabolic networks are searched by resorting to a graph-theoretic approach based on P-graphs to overcome the combinatorial explosion issue.^{8–10} Herein, the equivalent pathways are also referred to stoichiometrically feasible pathways in accordance with the definitions in the P-graph-based approach. Moreover, the resultant solution pathways are prioritized based on thermodynamic principles.

In principle, all chemical reactions, including metabolic reactions, are reversible: a reaction favors either the forward or backward direction, depending on the Gibbs free energy change of reaction (ΔG_r) .¹¹ Extensive research has been carried out to estimate ΔG_r for identifying the favored direction of every reaction to determine the thermodynamically feasible pathways in a metabolic network.^{12–15} Even though the thermodynamic criterion is invaluable in analyzing the metabolic network, this criterion requires an exception: The available experimental results imply that some of the thermodynamically unfavorable reactions are essential to the cell.¹⁶ This inconsistency arises from the uncertainties contained in the data for calculating ΔG_r and the incomplete understanding of intracellular reactions in the living cells, such as the effect of the energy produced by the common-intermediate strategy of ATP (adenosine triphosphate) and NADH (nicontinamide adenine dinucleotide). Thus, unless a reaction step is assured to be absent from the

Special Issue: L. T. Fan Festschrift

 Received:
 March 12, 2012

 Revised:
 July 5, 2012

 Accepted:
 July 9, 2012

 Published:
 July 12, 2012

metabolic pathway, it should not be eliminated in the search space solely based on the thermodynamic criterion.

An effective strategy comprising two phases has been proposed in the current work to determine the thermodynamically dominant pathways in a metabolic network. The method is applied to the pathway analysis of *E. coli*, the most widely deployed microorganism for the synthesis of biochemicals. In the first example, the overall procedure is illustrated with a small model for maximal acetate and ethanol production. Then, the efficacy of the proposed method is demonstrated in the second example by identifying the important reaction steps for maximal poly(3-hydroxybutyrate) [P(3HB)] production on the basis of the thermodynamically dominant pathways. P(3HB) has the superior characteristics as the raw material for the biodegradable plastics.

Table 1. Numbers of Essential, Substitutable, And Blocked Reactions in Examples 1 and 2

	Exan	Example 2	
types of reactions	maximal acetate production	maximal ethanol production	maximal P(3HB) production
essential	17	12	6
substitutable	8	7	89
blocked	23	29	215

Table 2. Values of $(\Delta G_r)_{\min}$ and $(\Delta G_r)_{\max}$ for the Substitutable Reactions in the Stoichiometrically Feasible Metabolic Pathways for Maximal Acetate and Ethanol Production^{*a*}

reaction name	reaction	$\left(\Delta G_r ight)_{ m min}$ (kcal/mol)	$\left(\Delta G_r ight)_{ m max}$ (kcal/mol)
Gly3	$FDP + H_2O \rightarrow F6P + Pi$	-2220	2480
Gly11	$\begin{array}{l} \mathrm{PYR} + \mathrm{ATP} + \mathrm{H_2O} \rightarrow \mathrm{AMP} + \mathrm{Pi} + \\ \mathrm{PEP} + 2\mathrm{H^+} \end{array}$	-20 600	-4160
Gly13	$\mathrm{OA} + \mathrm{ATP} \rightarrow \mathrm{CO}_2 + \mathrm{ADP} + \mathrm{PEP}$	-1700	8720
Gly14	$\text{PEP} + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{OA} + \text{Pi} + \text{H}^+$	-14500	-3390
Egy3	$\begin{array}{l} \text{NADPH} + \text{NAD}^{+} \rightarrow \text{NADP} + \\ \text{NADH} \end{array}$	-3810	3810
Egy5	$2H(e) + NADP + NADH \rightarrow 2H^+ + NADPH + NAD^+$	-5460	7630
Egy6	$\mathrm{ADP} + \mathrm{Pi} + \mathrm{H}^+ \to \mathrm{ATP} + \mathrm{H_2O}$	1270	9590
Egy7	$\text{ATP} + \text{AMP} \leftrightarrow \text{2ADP}$	-3810	3810
Egy8	$\mathrm{ATP} + \mathrm{H_2O} \rightarrow \mathrm{ADP} + \mathrm{Pi}$	-1950	3640

^{*a*}The values are estimated for $T = 25^{\circ}$ C, pH 7.6, and the ionic strength of 0.15 M (data taken from Kummel et al.¹³

This strategy is akin to that of the flowsheet synthesis for any chemical or biochemical process: The process flowsheet is first composed on the basis of the mass balances prior to performing any thermodynamic analysis, including energy and exergy balances.

METHODS

The methods include two phases. The first executes the identification of stoichiometrically feasible metabolic pathways; and the second involves the selection of thermodynamically dominant pathways from such feasible pathways. Presumably, it would be most logical to select the dominant pathways on the basis of an energetic or thermodynamic criterion.

Identification of Stoichiometrically Feasible Metabolic Pathways. Stoichiometrically feasible metabolic pathways and their flux distributions can be exhaustively identified through the flux balance analysis (FBA)¹⁷ and the graph-theoretic method based on process graphs (P-graphs)^{8,18} executed sequentially.^{9,10} The overall reaction is obtained via FBA from a series of candidate metabolic reactions and the objective metabolites to be maximized or minimized. This is followed by the identification of the stoichiometrically feasible pathways and the reaction fluxes in them, which satisfy the overall reaction, via algorithm PBT. At the outset, the maximal structure, which is the maximally connected network of the metabolites and the reactions, is generated to exclude the combinatorially infeasible pathways. Subsequently, the stoichiometrically feasible (i.e., balanced) pathways are exhaustively recovered from this maximal structure via algorithm PBT. The details are available elsewhere.^{8–10,18}

For a large-scale metabolic pathway, knowledge of essential, substitutable, and blocked reactions will facilitate the identification of stoichiometrically feasible metabolic pathways. The resultant flux distributions of a set of stoichiometrically feasible pathways naturally reveal the flux variability of each reaction step in the pathways.⁶ In generating the overall reaction, the reaction steps with nonzero fluxes in every solution pathway are essential; those with zero fluxes are blocked; and the remaining ones are substitutable.¹⁵ While the flux variability analysis measures only the extent of variability, the graph-theoretic method provides the exact values of reaction fluxes in every stoichiometrically feasible pathway. Accordingly, the latter renders it possible to distinguish those pathways by further investigating the differentiated properties of substitutable reactions.

				ΔG_r^d (ke	cal/mol)			
reaction name	1	2	3	4	5	6 ^{<i>a</i>}	7	8
Gly3		2480			2480			
Gly11	-4160							-4160
Gly13				8720			8720	
Gly14				-3390			-3390	
Egy3	3810	3810	3810	3810				
Egy5	7630	7630	7630	7630				
Egy6					9590	9590	9590	9590
Egy7	3810							3810
Egy8			3640			640		
rank	3	1	2	4	5	6	8	7

Table 3. Values of ΔG_r^d for Substitutable Reactions in the Stoichiometrically Feasible Pathways for Maximal Acetate Production in Example 1

^{*a*}Here, the optimal pathway has been identified by linear programming.

Selection of Thermodynamically Dominant Pathways. Thermodynamically dominant pathways are selected from the stoichiometrically feasible metabolic pathways on the basis of ΔG_r of every metabolic reaction step in the pathways. Unfortunately, however, the value of ΔG_r for a metabolic reaction under specific conditions is usually unknown; instead, only its minimum value, $(\Delta G_r)_{\min}$, and maximum value, $(\Delta G_r)_{\max}$, are known, because of the variations of concentrations of metabolites involved in the reaction.

Reiterating, any reaction with a more-negative ΔG_r value is favored over a reaction with a less-negative (or more-positive) ΔG_r value.⁸ It is logical to envision that the tendency or extent of any feasible pathway to proceed is controlled by the metabolic reaction step in the pathway with the largest possible $(\Delta G_r)_{max}$. This, in turn, renders it possible to select the pathway for which

Table 4. Values of ΔG_r^d for Substitutable Reactions in the Stoichiometrically Feasible Pathways for Maximal Ethanol Production in Example 1

	ΔG_r^d (kcal/mol)				
reaction name	1	2	3 ^{<i>a</i>}	4	
Gly3				2480	
Gly11		-4160			
Gly13	8720				
Gly14	-3390				
Egy7		3810			
Egy8			3640		
rank	4	3	2	1	

^{*a*}Here, the optimal pathway has been identified by linear programming.

its largest possible $(\Delta G_r)_{max}$ value is the lowest among all the competing feasible pathways as the thermodynamically dominant one.

Naturally, for any reaction step occurring in the opposite direction as indicated by its negative flux, the change of any extensive thermodynamic property, for instance, ΔG_r , reverses its sign. Thus, $-(\Delta G_r)_{\min}$ takes the place of $(\Delta G_r)_{\max}$. For convenience, therefore, the quantity ΔG_r^d is defined such that if J_r of a reaction step is positive, it is ΔG_r ; and if J_r of a reaction step is positive, it is ΔG_r^d and if J_r of a reaction step is negative, it is $-\Delta G_r$. With this definition of ΔG_r^d , the pathway with the smallest value of $[\Delta G_r^d]_{\max}$ can be selected as the dominant one. If the values of $[\Delta G_r^d]_{\max}$ among all the pathways in two or more pathways are equal, these pathways are similarly ranked for their thermodynamic dominance, in terms of the second largest ΔG_r^d and so on.

Application to the Metabolic Network Models of *E. coli*. The proposed method is illustrated with the two examples of the metabolic network models of *E. coli*. One model contains 52 metabolites in 48 reactions consisting of the glycolytic pathway, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and the transport reactions.⁸ The overall procedure of determining the thermodynamically dominant pathways among the optimal equivalent pathways is described with this relatively simple model. The other contains 295 metabolites in 310 reactions including the P(3HB) biosynthesis pathway. This model was previously investigated for maximal P(3HB) production employing FBA and validated through experiments.¹⁹ Accordingly, the efficacy of the method proposed herein could be elucidated by comparing it with the results of the previous work.

The ΔG_r values of the substitutable reaction steps, under the specific conditions, have been estimated by resorting to the

Figure 1. Pathways 2 and 6 for maximum acetate production: The former being the most thermodynamically dominant pathway, and the latter being the optimal pathway identified solely based on linear programming.

Table 5. Number of Pathways, Containing the Essential or Substitutable Reactions among All the Stoichiometrically Feasible Pathways and the Thermodynamically Dominant 100 Pathways, For Maximal P(3HB) Production in Example 2

			No. of Path	ways ^a
reaction name	enzyme	reaction	all 11 455	Top 100
ptsIH	phosphotransferase system	$GLC + PEP \rightarrow PYR + G6P$	11 455	100
pgi	phosphoglucose isomerase	$G6P \leftrightarrow F6P$	4840 (3996)	92
pfkAB	phosphofructokinase	$F6P + ATP \leftrightarrow F16P + ADP$	6328 (1580)	49
fbp	fructose-1,6-bisphosphate aldolase	$F16P + PI \rightarrow F6P$	999	2
fba	fructose-1.6-bisphosphatase	$F16P \leftrightarrow T3P1 + T3P2$	6227 (2064)	49 (24)
tviA	triosphosphate isomerase	$T3P1 \leftrightarrow T3P2$	5580 (2526)	100
oanA	glyceraldehyde-3-phosphate_dehydrogenase	$T3P1 + PI + NAD \leftrightarrow a13P2DG + NADH$	11.335 (19)	100
nok	phosphoglycerate kinase	$a13P2DG + ADP \leftrightarrow a3PDGL + ATP$	11 335 (19)	100
onmAB	phosphoglycerate mutase	$a3PDGL \leftrightarrow a2PDGL$	10298(231)	95 (1)
eno	enolase	a2PDGL \leftrightarrow PEP	10298(231)	95 (1)
nvkAF	pyruvate kinase	$PEP + ADP \rightarrow PYR + ATP$	4303	2.9
nckA	PEP carboxykinase	$OA + ATP \leftrightarrow PEP + ADP + CO_{2}$	5202 (2087)	23(19)
nnc	PEP carboxylase	$PEP + CO \rightarrow PI + OA$	2671	20 (17)
Ind A	nvriwate dehvdrogenase	$PYR + COA + NAD \rightarrow ACCOA + CO. + NADH$	6484	8
nnsA	PFP synthase	$PVR + ATP \rightarrow PEP + AMP + PI$	2652	33
7wf	alucose-6-phosphate dehydrogenase	$C6P + NADP \leftrightarrow D6PCI + NADPH$	6615	8
zwj	6 phosphogluconolactonase	Dependent and the period of	6615	8
Pgi and	6 phosphogluconota dobudroganasa	$DAPCC + NADPC \Leftrightarrow PISP + CO \to NADPH$	4522 (2072)	(44)
gnu mi A B	riboso 5 phosphoto isomoroso	$DOFGC + MADY \leftrightarrow RLSY + CO_2 + MADYII$	4533 (3073)	(44)
тріль	ribose-5-phosphate isomerase	$RLSP \leftrightarrow RSP$	4555 (5075)	(44)
tpe	translastelase 1	$RLSP \leftrightarrow ASP$	4555 (5075)	(44)
talP	transketolase 1	$KJF + AJF \leftrightarrow IJFI + J/F$ $T2D1 + S7D \leftrightarrow E4D + E4D$	4555 (5075)	(44)
taiD	translatolase	$13P1 + 3/P \leftrightarrow E4P + F0P$ $Y5D + E4D \leftrightarrow E4D + T2D1$	4555 (5075)	(44)
11	(rahssetolase 2	$ASP + E4P \leftrightarrow FOP + 15P1$	4333 (3073)	(44)
eda	o-phosphogluconate denydrase	$DOPGC \rightarrow 32K3DOPG$	0509	52
eaa	2-keto-3-deoxy-6-phosphogluconate aldolase	$a_2K_3D_0PG \rightarrow 13P1 + PYR$	6569	52
Glycogen02	glycogen synthase	$GIP + AIP \rightarrow GLYCOGEN + ADP + PPI$	1035	0
GlycogenU3	glycogen phosphorylase	$GLICOGEN + PI \rightarrow GIP$	1035	0
Diss_Pyruvate04	pyruvate formate lyase	$PYR + COA \rightarrow FORMATE + ACCOA$	6112	93
gltA	citrate synthase	$ACCOA + OA \leftrightarrow CII + COA$	(11 356)	(76)
acnAB	aconitase		(11 356)	(76)
icdA	isocitrate dehydrogenase	$1CIT + NADP \leftrightarrow AKG + CO_2 + NADPH$	(11 369)	(76)
sucAB	2-ketoglutarate dehydrogenase	$AKG + COA + NAD \leftrightarrow SUCCOA + CO_2 + NADH$	(11 369)	(76)
sucCD	succinate thickinase	$SUCCOA + GDP + PI \leftrightarrow SUCC + COA + GTP$	(11 369)	(76)
sdhABCD	succinate dehydrogenase	SUCC + FAD \rightarrow FUM + FADH ₂	1682	11
frdABCD	fumurate reductase	$FUM + FADH_2 \rightarrow SUCC + FAD$	11 358	76
fumABC	fumarase	$FUM \leftrightarrow MAL$	(11356)	(76)
mdh	malate dehydrogenase	$MAL + NAD \leftrightarrow OA + NADH$	1024 (6738)	26 (63)
mezl	malic enzyme	$MAL + NADP \rightarrow PYR + CO_2 + NADPH$	4967	0
mez2	malic enzyme	$MAL + NAD \leftrightarrow PYR + CO_2 + NADH$	1375 (6302)	30 (48)
TCA12	isocitrate lyase	$ICIT \rightarrow SUCC + GLX$	2809	12
TCA13	malate synthase	$ACCOA + GLX \rightarrow MAL + COA$	2809	12
Respiration01	NADH dehydrogenase II	$NADH + Q \rightarrow NAD + QH_2$	2917	40
Respiration02	NADH dehydrogenase I	NADH + Q \rightarrow NAD + QH ₂ + 4 Hext	4663	0
Respiration03	formate dehydrogenase	FORMATE + Q \rightarrow QH ₂ + CO ₂ + 2 Hext	4801	0
Respiration06	succinate dehydrogenase complex	$FADH2 + Q \leftrightarrow FAD + QH_2$	(10 041)	(40)
ATP_synthesis	F0F1-ATPase	$ATP \leftrightarrow ADP + PI + 3 \text{ Hext}$	(8256)	0
Asp01	aspartate transaminase	$GLU + OA \leftrightarrow ASP + AKG$	4576	42
Glu_Gln01	glutamate dehydrogenase	$AKG + NH_3 + NADPH \rightarrow NADP + GLU$	5390	56
Glu_Gln02	glutamine synthatase	$GLU + NH_3 + ATP \rightarrow GLN + ADP + PI$	3829	6
Glu_Gln03	glutamate synthase	$AKG + GLN + NADPH \rightarrow 2 GLU + NADP$	3829	6
Ser_Gly01	3-phosphoglycerate dehydrogenase	$a3PDGL + NAD \rightarrow PHP + NADH$	4784	21
Ser_Gly02	phosphoserine transaminase	$PHP + GLU \rightarrow AKG + a3PSER$	4784	21
Ser_Gly03	phosphoserine phosphatase	$a3PSER \rightarrow SER + PI$	4784	21
Ser_Gly04	serine hydroxymethyltransferase	$GLY + METTHF \leftrightarrow SER + THF$	(4784)	(21)
Ser_Gly05	glycine cleavage system	$GLY + THF + NAD \rightarrow METTHF + CO_2 + NH_3 + NADH$	8445	59
Ser_Gly06	threonine dehydrogenase	$THR + NAD \leftrightarrow AABK + NADH$	4576	42
Ser_Gly07	amino-b-ketobutyrase	$AABK + COA \leftrightarrow GLY + ACCOA$	4576	42
Ser_Gly08	formate dehydrogenase	FORMATE + NAD \rightarrow CO ₂ +NADH	7469	95

Industrial & Engineering Chemistry Research

Table 5. continued

P3HB_syn_1

P3HB_syn_2

			No. of Pathways"	
reaction name	enzyme	reaction	all 11 455	Top 100
Ser_Gly09	formate THF ligase	THF + FORMATE + ATP \rightarrow FTHF + ADP + PI	1218	3
Ser_Gly10	formyl THF deformylase	$FTHF \rightarrow FORMATE + THF$	8732	61
Cys02	APS kinase	$APS + ATP \rightarrow PAPS + ADP$	122	0
Cys08	adenylyl sulfate kinase	$PAPS + ADP \rightarrow APS + ATP$	122	0
Thr_Lys01	aspartate kinase	$ASP + ATP \leftrightarrow BASP + ADP$	4576	42
Thr_Lys02	aspartate semialdehyde dehydrogenase	$BASP + NADPH \leftrightarrow ASPSA + NADP + PI$	4576	42
Thr_Lys03	Homoserine dehydrogenase	$ASPSA + NADPH \leftrightarrow HSER + NADP$	4576	42
Thr_Lys04	homoserine kinase	$HSER + ATP \rightarrow PHSER + ADP$	4576	42
Thr_Lys05	threonine synthase	$PHSER \rightarrow THR + PI$	4576	42
Nucleotides13	AMP phosphatase	$AMP \rightarrow ADN + PI$	780	16
Nucleotides14	adenylate kinase	$ATP + ADN \rightarrow AMP + ADP$	780	16
Nucleotides15	adenylate kinase	$ATP + AMP \rightarrow 2 ADP$	2652	33
Nucleotides19	GDP kinase	$GDP + ATP \leftrightarrow GTP + ADP$	11 369	76
Pyrimidines18	dUDP kinase	$DUDP + ATP \leftrightarrow DUTP + ADP$	526	0
Pyrimidines19	dUTP pyrophosphatase	$DUTP \rightarrow DUMP + PPI$	526	0
Pyrimidines20	dUMP kinase	$DUMP + ATP \leftrightarrow DUDP + ADP$	526	0
THF02	methylene THF dehydrogenase	$METTHF + NADP \leftrightarrow METHF + NADPH$	8445	59
THF03	methenyl tetrahydrofolate cyclehydrolase	$\text{METHF} \leftrightarrow \text{FTHF}$	8445	59
Lipids01	acetyl-CoA carboxylase	$ACCOA + ATP + CO_2 \leftrightarrow MALCOA + ADP + PI$	1243	8
Lipids02	malonyl-CoA:ACP transacylase	$MALCOA + ACP \leftrightarrow MALACP + COA$	1243	8
Lipids03	b-ketoacyl-ACP synthase	MALACP \rightarrow ACACP + CO ₂	1243	8
Lipids04	acetyl-CoA:ACP transacylase	$ACACP + COA \leftrightarrow ACP + ACCOA$	1243	8
Lipids10	glycerol-3-phosphate dehydrogenase	$T3P2 + NADH \leftrightarrow GL3P + NAD$	8163	100
Isoprenoids01	aldose reductase	$GL + NADP \leftrightarrow GLAL + NADPH$	7278	100
Isoprenoids02	glyceraldehyde kinase	$GLAL + ATP \rightarrow T3P1 + ADP$	7278	100
NAD05	NAD kinase	$NAD + ATP \rightarrow NADP + ADP$	1174	0
NAD06	NADP phosphatase	$NADP \rightarrow NAD + PI$	1174	0
PolyPI01	pyrophosphatase	$PPI \rightarrow 2 PI$	1561	0
PolyPI02	polyphosphate kinase	1000 ATP \leftrightarrow 1000 ADP + POLYP	1144	13
PolyPI03	polyphosphatase	$POLYP \rightarrow 1000 PI$	1144	13
Glycerol01	glycerol kinase	$GL + ATP \leftrightarrow GL3P + ADP$	(7278)	(100)
Glycerol02	glycerol-3-phosphate dehydrogenase	$GL3P + FAD \rightarrow T3P2 + FADH_2$	2905	39
Transport10	glucose transport	$GLCext \leftrightarrow GLC$	11 455	100
Transport11	carbon dioxide transport	$CO2ext \leftrightarrow CO_2$	(11 455)	(100)

2 ACCOA \rightarrow COA + ACETOCOA

 $C4COA \rightarrow P(3HB) + COA$

P3HB_syn_3 P(3HB) synthase ^aParentheses () indicates reactions in the negative direction.

acetoacetyl-CoA reductase

 β -ketothiolase

transformation of the experimental data^{20,21} and the group contribution method.¹⁶ Subsequently, the ranges of ΔG_r have been calculated for the approximate ranges of metabolite concentrations reported in recent works.^{13,2}

RESULTS

Analyzed herein are the results from applying the proposed strategy to the two E. coli models.

Example 1: A Simple E. coli Model for Maximal Acetate and Ethanol Production. The model reported by Schilling and colleagues⁴ is optimized for maximal acetate and maximal ethanol production. This E. coli model gives rise to eight stoichiometrically feasible metabolic pathways for the maximal acetate production and four stoichiometrically feasible metabolic pathways for the maximal ethanol production.¹⁰ Table 1 presents the numbers of essential, substitutable, and blocked reactions for the model. The values of $(\Delta G_r)_{\min}$, the minimum value of ΔG_r , and $(\Delta G_r)_{\text{max}}$ and the maximum value of ΔG_r , for each substitutable reaction, are listed in Table 2. By multiplying these values with the sign of concomitant flux, the ΔG_r^d values

ACETOCOA + NADPH \rightarrow C4COA + NADP 11 455 100 11 455 100 have been obtained for the maximal acetate production and the maximal ethanol production. This has rendered it possible to rank the pathways according to $[\Delta G_r^d]_{max}$ as illustrated in Table 3

11 455

100

for the maximal acetate production and Table 4 for the maximal ethanol production. For maximal acetate production, Figure 1 depicts pathway 2, which has been identified as the most thermodynamically dominant pathway, and pathway 6, which has been identified to correspond with the result obtained by FBA. Similarly, for maximal ethanol production, pathway 4 has been determined to be the most thermodynamically dominant while pathway 3 has been identified by FBA.

Example 2: An E. coli Model Modified for Maximal P(3HB) Production. This E. coli model gives rise to 11 455 stoichiometrically feasible metabolic pathways for the maximal production of poly(3-hydroxybutyrate) $[P(3HB)]^{.19}$ The numbers of essential, substitutable, and blocked reactions for the model are also presented in Table 1. The computational time for identifying all the stoichiometrically feasible metabolic pathways is ~34 h on a 2.93 GHz Core 2 PC for this example.

Figure 2. Metabolic reactions in the thermodynamically dominant 100 pathways for maximal P(3HB) production in *E. coli*. The thickness of each arrow indicates the average flux, and the color indicates the presence ratio of the reaction in the 100 pathways to that in all of the stoichiometrically feasible pathways. The yellow to red colors in the color bar indicate the increase in the ratio from 0 to 3. The full names of metabolites are listed in the Supporting Information.

The ranges of ΔG_r and the concomitant ΔG_r^d have been calculated for the 89 substitutable reactions.

Three reactions catalyzed by malic enzyme, pyrophosphatase, and NADP phosphatase appearing in 6483 pathways have been determined to be thermodynamically unfavorable: Both of their $(\Delta G_r)_{\min}$ and $(\Delta G_r)_{\max}$ values are positive. Rationally, the pathways with those reaction steps are regarded thermodynamically less dominant, and therefore, ranked lower than the remaining ones.

The current work indicates that the number of stoichiometrically feasible pathways leading to the maximal theoretical yield of P(3HB) production is on the order of 10^4 for the metabolic network comprising 310 reactions. Table 5 lists the number of pathways, containing the essential and the substitutable reactions in generating the optimal overall reactions. The reactions that are essential for maximal P(3HB) production are those included in all 11 455 identified pathways. As depicted in Figure 2, the reactions contained in the thermodynamically dominant 100 pathways, which are $\sim 1\%$ of the total pathways, are examined to investigate the important reaction steps and their fluxes for the maximal production of P(3HB). This result may also contribute to the reduction of the errors of the study that arise from the uncertainties involved in the estimation of thermodynamic properties. The frequency of reactions in the thermodynamically dominant pathways is revealed through the color of arrows changing from yellow to red in Figure 2. The frequency number represents the presence ratio of the reaction in the thermodynamically dominant 100 pathways to that in all the stoichiometrically feasible pathways.

DISCUSSION

The graph-theoretic approach based on *P*-graphs not only reduces the combinatorial complexity, but also provides a deeper understanding of the metabolic networks. As can be observed in Figure 1, *Gly* 2 and *Gly* 3 are represented as two separate reactions by different enzymes in the opposite directions. The *P*-graph approach may present exchange fluxes in this futile cycle, in addition to their net flux, while only the net flux can be identified in MFA. The physiological meaning of this futile cycle can be further consulted elsewhere.²³

Article

The complete set of ranked pathways has been identified to facilitate the experimental design of gene regulation. The results depicted in Figure 2 reveal the thermodynamically important reactions for this goal. Most noticeably in the middle part of the figure, some of the reactions producing pyruvate and acetyl-CoA, which are the precursors of P(3HB), are found to appear frequently in the thermodynamically dominant pathways. The mez2 and Diss Pyruvate 04 reactions appear, respectively, at 2.5 and 1.7 times of the average frequency. In the previous work, Hong and his co-workers¹⁹ presented the significance of the *eda* reaction, along with that of the aforementioned two precursors. They have attributed this to the requirement of NADPH in the P(3HB) biosynthesis flux. The eda reaction by 2-Keto-3-deoxy-6-phosphogluconate aldolase, however, is not exceptionally favored in the thermodynamically dominant pathways. Note on the upper left side of Figure 2, that the cyclic reactions containing the Isoprenoids01 reaction by Aldose reductase,

Industrial & Engineering Chemistry Research

appear ~1.5–2.1 times more often in ~1% of thermodynamically dominant pathways than the average. Summation over these reactions reveals that this cyclic pathway contributes to the production of the NADPH, performing the similar role as the *eda* reaction in the P(3HB) biosynthesis. It should be noted that this study does not include the other metabolic reactions in *E. coli* (e.g., the production of biomass) that are competing with the P(3HB) biosynthesis pathway. Thus, the results can be further reinforced by enhancing the overall reactions. Nevertheless, even neglecting the accurate prediction of metabolic behaviors, the important reactions for the P(3HB) biosynthesis could be thoroughly identified based on the mass balances and the thermodynamic principles.

CONCLUSION

The efficacy of the proposed strategy has been ascertained through the exploration of two *E. coli* models. For both models, the sets of stoichiometrically feasible pathways leading to their respective optimal overall reactions have been exhaustively identified on a PC of moderate size by resorting to the graphtheoretic method, based on process graphs (*P*-graphs). Subsequently, these pathways have been differentiated by determining the thermodynamically dominant pathways among the feasible pathways on the basis of the Gibbs free-energy changes of reactions in the pathways. The proposed approach will contribute to understanding biochemical networks and facilitating the experimental design of gene regulation for enhanced production of the desired product.

APPENDIX A. P-GRAPH APPROACH FOR METABOLIC NETWORK

P-Graph

P-graph was developed for the algorithmic network synthesis of chemical processes.²⁴ It is comprised of the nodes of materials and operating units shown in Figure A.1. For metabolic

Figure A.1. *P*-graph representation for reaction $A+B \rightarrow C$. O(1) is a reaction node, and M(A), M(B), and M(C) are material nodes.

networks, the role of operating nodes is played by metabolic reactions, and the materials are enzymes and nutrients. The nodes are connected with directed arcs, which indicate the direction of reaction pathways, and connection rules are expressed with the following axioms:¹⁸

(a) Six axioms of feasible reaction pathways

(R1) Every final product (target) is totally produced by the reaction steps represented in the pathway. (R2) Every starting reactant (precursor) is totally

consumed by the reaction steps represented in the pathway.

(R3) Every active intermediate produced by any reaction step represented in the pathway is totally consumed by one or more reaction steps in the pathway; and every active intermediate consumed by any reaction step represented in the pathway is totally produced by one or more reaction steps in the pathway.

(R4) All reaction steps represented in the pathway are defined a priori.

(R5) The network representing the pathway is acyclic.

(R6) At least one elementary-reaction step represented in the pathway activates a starting reactant (precursor).

(b) Seven axioms of the combinatorially feasible reaction networks

(T1) Every final product (target) is represented in the network.

(T2) Every starting reactant (precursor) is represented in the network.

(T3) Each reaction step represented in the network is defined a priori.

(T4) Every active species represented in the network has at least one path leading to a final product (target) of the overall reaction.

(T5) A reactant of any elementary reaction represented in the reaction network is a starting reactant (precursor), if it is not produced by any reaction step represented in the network.

(T7) The network includes, at most, either the forward or reverse step of each elementary reaction represented in the network.

In this way, syntactic and semantic contents of biochemical networks may be described and implemented in algorithms.

Maximal Structure

The maximal structure of a network is generated by identifying input and output materials of operating units, and then merging all the common material nodes. Accordingly, it contains all the combinatorially feasible pathways.

Stoichiometrically Feasible Pathways

Combinatorially feasible pathways of a network, which are subsets of the maximal structure, are generated based on the names of input and output materials. By further imposing stoichiometric ratios of metabolic reactions and mass balance constraints, stoichiometrically feasible pathways are obtained as the candidate solutions of network synthesis. In process networks, the most economical structure among them is selected as a solution network.

Algorithm PBT

Identification of metabolic pathways is different from designing a chemical process in that the former do not have measurable economic costs of reactions, unlike the latter, where each operating unit has operating and investment costs. This attribute is responsible for the generation of cyclic or dependent pathways during the calculation of solution pathways, which all produce a predefined overall reaction. It is worth noting that the desired

Industrial & Engineering Chemistry Research

overall reaction should be calculated by linear programming. While the cyclic pathways frustrate the successful calculation of feasible pathways, generating linear combinations of independent pathways is unnecessary and raises the computational burden. Therefore, a Pathway Back-Tracking algorithm (algorithm PBT) is developed to generate the complete set of acyclic and independent feasible pathways by discriminating cyclic and dependent pathways during computation.

ASSOCIATED CONTENT

Supporting Information

(A) Estimation of the standard Gibbs free energy with the group contribution method; (B) calculation of the Gibbs free energy change of reaction; (C) the flux distributions of the thermodynamically dominant 100 pathways for maximal P (3HB) production and the abbreviations for metabolite names. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +82-42-350-3920. Fax: +82-42-350-3910. E-mail: sunwon@kaist.ac.kr.

Present Addresses

[∇]Doosan Heavy Industries & Construction, Daejeon 305-348, Korea.

[⊥]Western Research Institute, Laramie, WY 82072.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Project for Developing Systems Metabolic Engineering Platform Technologies for Biorefineries, Technology Development Program to Solve Climate Changes (NRF-2012-C1AAA001-2012M1A2A2026556) and World Class University program (R322009000101420) of the Ministry of Education, Science and Technology (MEST) through the National Research Foundation of Korea; the Institute for Systems Design and Optimization at Kansas State University; and the Hungarian Scientific Research Fund (Project F61227). The authors deeply appreciate the advice and guidance received from Prof. L. T. Fan throughout the course of this work.

REFERENCES

(1) Kim, H. U.; Kim, T. Y.; Lee, S. Y. Metabolic flux analysis and metabolic engineering of microorganisms. *Mol. BioSyst.* **2008**, *4*, 113–120.

(2) Lee., S. Y.; Lee, D.-Y.; Kim, T. Y. Systems biotechnology for strain improvement. *Trends Biotechnol.* **2005**, *23*, 349–358.

(3) Lee, D.-Y.; Zimmer, R.; Lee, S. Y.; Park, S. Colored Petri net modeling and simulation of signal transduction pathways. *Metab. Eng.* **2006**, *8*, 112–122.

(4) Schilling, C. H.; Edwards, H. S.; Letscher, D.; Palsson, B. Ø. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. *Biotechnol. Bioeng.* **2001**, *71*, 286–306.

(5) Schwartz, J. M.; Kanehisa, M. Quantitative elementary mode analysis of metabolic pathways: The example of yeast glycolysis. *BMC Bioinf.* **2006**, *7*, 186–205.

(6) Mahadevan, R.; Schilling, C. H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. *Metab. Eng.* **2003**, *5*, 264–276.

(7) Klamt, S.; Stelling, J. Combinatorial complexity of pathway analysis in metabolic networks. *Mol. Biol. Rep.* **2002**, *29*, 233–236.

(8) Fan, L. T.; Bertok, B.; Friedler, F. Combinatorial framework for the systematic generation of reaction pathways. Presented at the *AIChE Annual Meeting*, Dallas, TX, 1999 (ISBNO-8169-0805-2).

(9) Seo, H.; Lee, D.-Y.; Park, S.; Fan, L. T.; Shafie, S.; Bertok, B.; Friedler, F. Graph-theoretical identification of pathways for biochemical reactions. *Biotechnol. Lett.* **2001**, *23*, 1551–1557.

(10) Lee, D.-Y.; Fan, L. T.; Park, S.; Lee, S. Y.; Shafie, S.; Bertok, B.; Friedler, F. Complementary identification of multiple flux distributions and multiple metabolic pathways. *Metab. Eng.* **2005**, *7*, 182–200.

(11) Stanley, I. S. Chemical and Engineering Thermodynamics, 3rd ed.; John Wiley & Sons, Inc.: New York, 1999.

(12) Yang, F.; Qian, H.; Beard, D. A. Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry. *Metab. Eng.* **2005**, *7*, 251–259.

(13) Kummel, A.; Panke, S.; Heinemann, M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. *Mol. Syst. Biol.* **2006**, *2*, Art. No. 2006.0034.

(14) Nolan, R. P.; Fenley, A. P.; Lee, K. Identification of distributed metabolic objectives in the hypermetabolic liver by flux and energy balance analysis. *Metab. Eng.* **2006**, *8*, 30–45.

(15) Henry, C. S.; Broadbelt, L. J.; Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. *Biophys. J.* 2007, 92, 1792–1805.

(16) Henry, C. S.; Jankowski, M. D.; Broadbelt, L. D.; Hatzimanikatis, V. Genome-scale thermodynamic analysis of *Escherichia coli* metabolism. *Biophys. J.* **2006**, *90*, 1453–1461.

(17) Varma, A.; Palsson, B. Ø. Metabolic flux balancing: Basic concepts, scientific and practical use. *Nat. Biotechnol.* **1994**, *12*, 994–998.

(18) Fan, L. T.; Bertok, B.; Friedler, F. A graph-theoretical method to identify candidate mechanisms for deriving the rate law of a catalytic reaction. *Comput. Chem.* **2002**, *26*, 265–292.

(19) Hong, S. H.; Park, S. J.; Moon, S. Y.; Park, J. P.; Lee, S. Y. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered *Escherichia coli*. *Biotechnol*. *Bioeng*. **2003**, *83*, 854–863.

(20) Alberty, R. A. Biochemical Thermodynamics: Applications of Mathematica; John Wiley & Sons, Inc.: Hoboken, NJ, 2006.

(21) NIST database, http://xpdb.nist.gov/enzyme_thermodynamics/.

(22) Ishii, N.; Nakahigashi, K.; Bata, T.; Robert, M.; Soga, T.; et al. Multiple high-throughput analyses monitor the response of *E. coli* to perturbations. *Science* **2007**, *316*, 593–597.

(23) Qian, H.; Beard, D. A. Metabolic futile cycles and their functions: A systems analysis of energy and control. *Syst. Biol.* **2006**, *153*, 192–200.

(24) Friedler, F.; Tarjan, K.; Huang, Y. W.; Fan, L. T. Combinatorial algorithms for process synthesis. *Comput. Chem.* **1992**, *16*, S313–320.