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ABSTRACT: An effective strategy comprising two phases is proposed to determine the thermodynamically dominant pathways
in a metabolic network of a given phenotype, involving several metabolic reactions. In the first phase, stoichiometrically feasible
metabolic pathways are exhaustively identified through the flux balance analysis and the graph-theoretic method based on
P-graphs. In the second phase, thermodynamically dominant pathways are selected from these stoichiometrically feasible
metabolic pathways on the basis of the Gibbs free energy change of reaction. The proposed strategy’s efficacy is demonstrated
by applying it to two E. coli models: one is for maximal acetate and ethanol production, and the other is for maximal
poly(3-hydroxybutyrate) production.

■ INTRODUCTION

Bio-based products are increasingly gaining worldwide interest as
substitutes for petrochemical products to reduce the dependency
on fossil fuels and to exploit their environmentally benign
characteristics. For the efficient production of these bio-based
products from the microorganisms, metabolic engineering is
indispensable to render it possible for microorganisms to become
suitable for such production.1 Metabolic networks are adapted
for the altered objectives in metabolic engineering with a variety
of approaches to achieve the high-yield processes at lower costs.2,3 It
is, however, rather convoluted to identify the engineering targets,
because of the complex interactions of various components in
metabolic networks. With the ever-growing information on the
functions and phenotypes in metabolic networks, because of the
technological advances, metabolic engineers are searching for
increasingly effective tools that will facilitate the metabolic
engineering of microorganisms through the systematic analysis and
prediction of biological behavior. Metabolic flux analysis (MFA),
among others, has contributed significantly to advancing metabolic
engineering, based on the pseudo-steady-state assumption and linear
programming (LP). By resorting toMFA, the overall reaction, or the
overall mass balance of consumed nutrients, secreted metabolites,
and byproduct, and the intracellular flux distribution can be observed
for a given objective function (e.g., maximum target production).
For simplicity, metabolic flux analysis often neglects the fact

that an overall reaction may be generated not from a unique
pathway but from one of multiple possible pathways. Multiple
pathways, however, are attainable through elementary fluxmodes
or extreme pathway analysis,4,5 and are referred to as alternate
optimal or equivalent pathways.6 Although these methods are
well-known to be efficient and informative in handling small-
scale metabolic networks, they are ineffective for generating the
equivalent pathways of large-scale metabolic networks, because

of the exponentially increasing combinatorial complexity of the
networks.7 In the current contribution, the equivalent pathways
of large-scale metabolic networks are searched by resorting to a
graph-theoretic approach based on P-graphs to overcome the
combinatorial explosion issue.8−10 Herein, the equivalent
pathways are also referred to stoichiometrically feasible pathways
in accordance with the definitions in the P-graph-based
approach. Moreover, the resultant solution pathways are
prioritized based on thermodynamic principles.
In principle, all chemical reactions, including metabolic

reactions, are reversible: a reaction favors either the forward or
backward direction, depending on the Gibbs free energy change
of reaction (ΔGr).

11 Extensive research has been carried out to
estimate ΔGr for identifying the favored direction of every
reaction to determine the thermodynamically feasible pathways
in a metabolic network.12−15 Even though the thermodynamic
criterion is invaluable in analyzing the metabolic network, this
criterion requires an exception: The available experimental
results imply that some of the thermodynamically unfavorable
reactions are essential to the cell.16 This inconsistency arises from
the uncertainties contained in the data for calculating ΔGr and
the incomplete understanding of intracellular reactions in the
living cells, such as the effect of the energy produced by the
common-intermediate strategy of ATP (adenosine triphos-
phate) and NADH (nicontinamide adenine dinucleotide).
Thus, unless a reaction step is assured to be absent from the
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metabolic pathway, it should not be eliminated in the search
space solely based on the thermodynamic criterion.
An effective strategy comprising two phases has been proposed

in the current work to determine the thermodynamically
dominant pathways in a metabolic network. The method is
applied to the pathway analysis of E. coli, the most widely
deployed microorganism for the synthesis of biochemicals. In the
first example, the overall procedure is illustrated with a small
model for maximal acetate and ethanol production. Then, the
efficacy of the proposed method is demonstrated in the second
example by identifying the important reaction steps for maximal
poly(3-hydroxybutyrate) [P(3HB)] production on the basis of
the thermodynamically dominant pathways. P(3HB) has the
superior characteristics as the raw material for the biodegradable
plastics.

This strategy is akin to that of the flowsheet synthesis for any
chemical or biochemical process: The process flowsheet is first
composed on the basis of the mass balances prior to performing
any thermodynamic analysis, including energy and exergy
balances.

■ METHODS

The methods include two phases. The first executes the
identification of stoichiometrically feasible metabolic pathways;
and the second involves the selection of thermodynamically
dominant pathways from such feasible pathways. Presumably, it
would be most logical to select the dominant pathways on the
basis of an energetic or thermodynamic criterion.

Identification of Stoichiometrically Feasible Metabolic
Pathways. Stoichiometrically feasible metabolic pathways and
their flux distributions can be exhaustively identified through the
flux balance analysis (FBA)17 and the graph-theoretic method
based on process graphs (P-graphs)8,18 executed sequentially.9,10

The overall reaction is obtained via FBA from a series of
candidate metabolic reactions and the objective metabolites to be
maximized or minimized. This is followed by the identification of
the stoichiometrically feasible pathways and the reaction fluxes in
them, which satisfy the overall reaction, via algorithm PBT. At the
outset, the maximal structure, which is the maximally connected
network of the metabolites and the reactions, is generated to
exclude the combinatorially infeasible pathways. Subsequently,
the stoichiometrically feasible (i.e., balanced) pathways are
exhaustively recovered from this maximal structure via algorithm
PBT. The details are available elsewhere.8−10,18

For a large-scale metabolic pathway, knowledge of essential,
substitutable, and blocked reactions will facilitate the identi-
fication of stoichiometrically feasible metabolic pathways. The
resultant flux distributions of a set of stoichiometrically feasible
pathways naturally reveal the flux variability of each reaction step
in the pathways.6 In generating the overall reaction, the reaction
steps with nonzero fluxes in every solution pathway are essential;
those with zero fluxes are blocked; and the remaining ones are
substitutable.15 While the flux variability analysis measures only
the extent of variability, the graph-theoretic method provides the
exact values of reaction fluxes in every stoichiometrically feasible
pathway. Accordingly, the latter renders it possible to distinguish
those pathways by further investigating the differentiated
properties of substitutable reactions.

Table 1. Numbers of Essential, Substitutable, And Blocked
Reactions in Examples 1 and 2

Example 1 Example 2

types of
reactions

maximal acetate
production

maximal ethanol
production

maximal P(3HB)
production

essential 17 12 6
substitutable 8 7 89
blocked 23 29 215

Table 2. Values of (ΔGr)min and (ΔGr)max for the Substitutable
Reactions in the Stoichiometrically Feasible Metabolic
Pathways for Maximal Acetate and Ethanol Productiona

reaction
name reaction

(ΔGr)min
(kcal/mol)

(ΔGr)max
(kcal/mol)

Gly3 FDP + H2O → F6P + Pi −2220 2480
Gly11 PYR + ATP + H2O → AMP + Pi +

PEP + 2H+
−20 600 −4160

Gly13 OA + ATP → CO2 + ADP + PEP −1700 8720
Gly14 PEP + CO2 + H2O→ OA + Pi + H+ −14 500 −3390
Egy3 NADPH + NAD+ → NADP +

NADH
−3810 3810

Egy5 2H(e) + NADP + NADH → 2H+ +
NADPH + NAD+

−5460 7630

Egy6 ADP + Pi + H+ → ATP + H2O 1270 9590
Egy7 ATP + AMP ↔ 2ADP −3810 3810
Egy8 ATP + H2O → ADP + Pi −1950 3640

aThe values are estimated for T = 25°C, pH 7.6, and the ionic strength
of 0.15 M (data taken from Kummel et al.13

Table 3. Values ofΔGr
d for Substitutable Reactions in the Stoichiometrically Feasible Pathways for Maximal Acetate Production in

Example 1

ΔGr
d (kcal/mol)

reaction name 1 2 3 4 5 6a 7 8

Gly3 2480 2480
Gly11 −4160 −4160
Gly13 8720 8720
Gly14 −3390 −3390
Egy3 3810 3810 3810 3810
Egy5 7630 7630 7630 7630
Egy6 9590 9590 9590 9590
Egy7 3810 3810
Egy8 3640 640

rank 3 1 2 4 5 6 8 7
aHere, the optimal pathway has been identified by linear programming.
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Selection of Thermodynamically Dominant Pathways.
Thermodynamically dominant pathways are selected from the
stoichiometrically feasible metabolic pathways on the basis of
ΔGr of every metabolic reaction step in the pathways.
Unfortunately, however, the value of ΔGr for a metabolic
reaction under specific conditions is usually unknown; instead,
only its minimum value, (ΔGr)min, and maximum value,
(ΔGr)max, are known, because of the variations of concentrations
of metabolites involved in the reaction.
Reiterating, any reaction with a more-negative ΔGr value is

favored over a reaction with a less-negative (or more-positive)
ΔGr value.

8 It is logical to envision that the tendency or extent of
any feasible pathway to proceed is controlled by the metabolic
reaction step in the pathway with the largest possible (ΔGr)max.
This, in turn, renders it possible to select the pathway for which

its largest possible (ΔGr)max value is the lowest among all the
competing feasible pathways as the thermodynamically domi-
nant one.
Naturally, for any reaction step occurring in the opposite

direction as indicated by its negative flux, the change of any
extensive thermodynamic property, for instance,ΔGr, reverses its
sign. Thus, −(ΔGr)min takes the place of (ΔGr)max. For
convenience, therefore, the quantity ΔGr

d is defined such that if
Jr of a reaction step is positive, it isΔGr; and if Jr of a reaction step
is negative, it is −ΔGr. With this definition of ΔGr

d, the pathway
with the smallest value of [ΔGr

d]max can be selected as the
dominant one. If the values of [ΔGr

d]max among all the pathways
in two or more pathways are equal, these pathways are similarly
ranked for their thermodynamic dominance, in terms of the
second largest ΔGr

d, and so on.
Application to theMetabolic NetworkModels of E. coli.

The proposed method is illustrated with the two examples of the
metabolic network models of E. coli. One model contains 52
metabolites in 48 reactions consisting of the glycolytic pathway,
the tricarboxylic acid (TCA) cycle, the pentose phosphate
pathway, and the transport reactions.8 The overall procedure of
determining the thermodynamically dominant pathways among
the optimal equivalent pathways is described with this relatively
simple model. The other contains 295 metabolites in 310
reactions including the P(3HB) biosynthesis pathway. This
model was previously investigated for maximal P(3HB)
production employing FBA and validated through experi-
ments.19 Accordingly, the efficacy of the method proposed
herein could be elucidated by comparing it with the results of the
previous work.
The ΔGr values of the substitutable reaction steps, under the

specific conditions, have been estimated by resorting to the

Table 4. Values of ΔGr
d for Substitutable Reactions in the

Stoichiometrically Feasible Pathways for Maximal Ethanol
Production in Example 1

ΔGr
d (kcal/mol)

reaction name 1 2 3a 4

Gly3 2480
Gly11 −4160
Gly13 8720
Gly14 −3390
Egy7 3810
Egy8 3640

rank 4 3 2 1
aHere, the optimal pathway has been identified by linear
programming.

Figure 1. Pathways 2 and 6 for maximum acetate production: The former being themost thermodynamically dominant pathway, and the latter being the
optimal pathway identified solely based on linear programming.
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Table 5. Number of Pathways, Containing the Essential or Substitutable Reactions among All the Stoichiometrically Feasible
Pathways and the Thermodynamically Dominant 100 Pathways, For Maximal P(3HB) Production in Example 2

No. of Pathwaysa

reaction name enzyme reaction all 11 455 Top 100

ptsIH phosphotransferase system GLC + PEP → PYR + G6P 11 455 100
pgi phosphoglucose isomerase G6P ↔ F6P 4840 (3996) 92
pfkAB phosphofructokinase F6P + ATP ↔ F16P + ADP 6328 (1580) 49
fbp fructose-1,6-bisphosphate aldolase F16P + PI → F6P 999 2
fba fructose-1,6-bisphosphatase F16P ↔ T3P1 + T3P2 6227 (2064) 49 (24)
tpiA triosphosphate isomerase T3P1 ↔ T3P2 5580 (2526) 100
gapA glyceraldehyde-3-phosphate dehydrogenase T3P1 + PI + NAD ↔ a13P2DG + NADH 11,335 (19) 100
pgk phosphoglycerate kinase a13P2DG + ADP ↔ a3PDGL + ATP 11 335 (19) 100
gpmAB phosphoglycerate mutase a3PDGL ↔ a2PDGL 10 298 (231) 95 (1)
eno enolase a2PDGL ↔ PEP 10 298 (231) 95 (1)
pykAF pyruvate kinase PEP + ADP → PYR + ATP 4303 29
pckA PEP carboxykinase OA + ATP ↔ PEP + ADP + CO2 5202 (2087) 23 (19)
ppc PEP carboxylase PEP + CO2 → PI + OA 2671 20
lpdA pyruvate dehydrogenase PYR + COA + NAD → ACCOA + CO2 + NADH 6484 8
ppsA PEP synthase PYR + ATP → PEP +AMP + PI 2652 33
zwf glucose-6-phosphate dehydrogenase G6P + NADP ↔ D6PGL + NADPH 6615 8
pgl 6-phosphogluconolactonase D6PGL → D6PGC 6615 8
gnd 6-phosphogluconate dehydrogenase D6PGC + NADP ↔ RL5P + CO2 + NADPH 4533 (3073) (44)
rpiAB ribose-5-phosphate isomerase RL5P ↔ R5P 4533 (3073) (44)
rpe ribose-5-phosphate epimerase RL5P ↔ X5P 4533 (3073) (44)
tktAB1 transketolase 1 R5P + X5P ↔ T3P1 + S7P 4533 (3073) (44)
talB transaldolase T3P1 + S7P ↔ E4P + F6P 4533 (3073) (44)
tktAB2 transketolase 2 X5P + E4P ↔ F6P + T3P1 4533 (3073) (44)
edd 6-phosphogluconate dehydrase D6PGC → a2K3D6PG 6569 52
eda 2-keto-3-deoxy-6-phosphogluconate aldolase a2K3D6PG → T3P1 + PYR 6569 52
Glycogen02 glycogen synthase G1P + ATP → GLYCOGEN + ADP + PPI 1035 0
Glycogen03 glycogen phosphorylase GLYCOGEN + PI → G1P 1035 0
Diss_Pyruvate04 pyruvate formate lyase PYR + COA → FORMATE + ACCOA 6112 93
gltA citrate synthase ACCOA + OA ↔ CIT+ COA (11 356) (76)
acnAB aconitase CIT ↔ ICIT (11 356) (76)
icdA isocitrate dehydrogenase ICIT + NADP ↔ AKG + CO2 + NADPH (11 369) (76)
sucAB 2-ketoglutarate dehydrogenase AKG + COA + NAD ↔ SUCCOA + CO2 + NADH (11 369) (76)
sucCD succinate thiokinase SUCCOA + GDP + PI ↔ SUCC + COA + GTP (11 369) (76)
sdhABCD succinate dehydrogenase SUCC + FAD → FUM + FADH2 1682 11
f rdABCD fumurate reductase FUM + FADH2 → SUCC + FAD 11 358 76
fumABC fumarase FUM ↔ MAL (11 356) (76)
mdh malate dehydrogenase MAL + NAD ↔ OA + NADH 1024 (6738) 26 (63)
mez1 malic enzyme MAL + NADP → PYR + CO2 + NADPH 4967 0
mez2 malic enzyme MAL + NAD ↔ PYR + CO2 + NADH 1375 (6302) 30 (48)
TCA12 isocitrate lyase ICIT → SUCC + GLX 2809 12
TCA13 malate synthase ACCOA + GLX → MAL + COA 2809 12
Respiration01 NADH dehydrogenase II NADH + Q → NAD + QH2 2917 40
Respiration02 NADH dehydrogenase I NADH + Q → NAD + QH2 + 4 Hext 4663 0
Respiration03 formate dehydrogenase FORMATE + Q → QH2 + CO2 + 2 Hext 4801 0
Respiration06 succinate dehydrogenase complex FADH2 + Q ↔ FAD + QH2 (10 041) (40)
ATP_synthesis F0F1-ATPase ATP ↔ ADP + PI + 3 Hext (8256) 0
Asp01 aspartate transaminase GLU + OA↔ ASP + AKG 4576 42
Glu_Gln01 glutamate dehydrogenase AKG + NH3 + NADPH → NADP + GLU 5390 56
Glu_Gln02 glutamine synthatase GLU + NH3 + ATP → GLN + ADP + PI 3829 6
Glu_Gln03 glutamate synthase AKG + GLN + NADPH → 2 GLU + NADP 3829 6
Ser_Gly01 3-phosphoglycerate dehydrogenase a3PDGL + NAD → PHP + NADH 4784 21
Ser_Gly02 phosphoserine transaminase PHP + GLU → AKG + a3PSER 4784 21
Ser_Gly03 phosphoserine phosphatase a3PSER → SER + PI 4784 21
Ser_Gly04 serine hydroxymethyltransferase GLY + METTHF ↔ SER + THF (4784) (21)
Ser_Gly05 glycine cleavage system GLY + THF + NAD → METTHF + CO2 + NH3 + NADH 8445 59
Ser_Gly06 threonine dehydrogenase THR + NAD ↔ AABK + NADH 4576 42
Ser_Gly07 amino-b-ketobutyrase AABK + COA ↔ GLY + ACCOA 4576 42
Ser_Gly08 formate dehydrogenase FORMATE + NAD → CO2 +NADH 7469 95
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transformation of the experimental data20,21 and the group
contribution method.16 Subsequently, the ranges of ΔGr have
been calculated for the approximate ranges of metabolite
concentrations reported in recent works.13,22

■ RESULTS

Analyzed herein are the results from applying the proposed
strategy to the two E. coli models.
Example 1: A Simple E. coliModel for Maximal Acetate

and Ethanol Production.Themodel reported by Schilling and
colleagues4 is optimized for maximal acetate and maximal
ethanol production. This E. coli model gives rise to eight
stoichiometrically feasible metabolic pathways for the maximal
acetate production and four stoichiometrically feasible metabolic
pathways for the maximal ethanol production.10 Table 1 presents
the numbers of essential, substitutable, and blocked reactions for
the model. The values of (ΔGr)min, the minimum value of ΔGr,
and (ΔGr)max, and the maximum value of ΔGr, for each
substitutable reaction, are listed in Table 2. By multiplying
these values with the sign of concomitant flux, the ΔGr

d values

have been obtained for the maximal acetate production and the
maximal ethanol production. This has rendered it possible to
rank the pathways according to [ΔGr

d]max, as illustrated in Table 3
for the maximal acetate production and Table 4 for the maximal
ethanol production. For maximal acetate production, Figure 1
depicts pathway 2, which has been identified as the most
thermodynamically dominant pathway, and pathway 6, which
has been identified to correspond with the result obtained by
FBA. Similarly, for maximal ethanol production, pathway 4 has
been determined to be the most thermodynamically dominant
while pathway 3 has been identified by FBA.

Example 2: An E. coli Model Modified for Maximal
P(3HB) Production. This E. coli model gives rise to 11 455
stoichiometrically feasible metabolic pathways for the maximal
production of poly(3-hydroxybutyrate) [P(3HB)].19 The
numbers of essential, substitutable, and blocked reactions for
the model are also presented in Table 1. The computational time
for identifying all the stoichiometrically feasible metabolic
pathways is ∼34 h on a 2.93 GHz Core 2 PC for this example.

Table 5. continued

No. of Pathwaysa

reaction name enzyme reaction all 11 455 Top 100

Ser_Gly09 formate THF ligase THF + FORMATE + ATP → FTHF + ADP + PI 1218 3
Ser_Gly10 formyl THF deformylase FTHF → FORMATE + THF 8732 61
Cys02 APS kinase APS + ATP → PAPS + ADP 122 0
Cys08 adenylyl sulfate kinase PAPS + ADP → APS + ATP 122 0
Thr_Lys01 aspartate kinase ASP + ATP ↔ BASP + ADP 4576 42
Thr_Lys02 aspartate semialdehyde dehydrogenase BASP + NADPH ↔ ASPSA + NADP + PI 4576 42
Thr_Lys03 Homoserine dehydrogenase ASPSA + NADPH ↔ HSER + NADP 4576 42
Thr_Lys04 homoserine kinase HSER + ATP → PHSER + ADP 4576 42
Thr_Lys05 threonine synthase PHSER → THR + PI 4576 42
Nucleotides13 AMP phosphatase AMP → ADN + PI 780 16
Nucleotides14 adenylate kinase ATP + ADN → AMP + ADP 780 16
Nucleotides15 adenylate kinase ATP + AMP → 2 ADP 2652 33
Nucleotides19 GDP kinase GDP + ATP ↔ GTP + ADP 11 369 76
Pyrimidines18 dUDP kinase DUDP + ATP ↔ DUTP + ADP 526 0
Pyrimidines19 dUTP pyrophosphatase DUTP → DUMP + PPI 526 0
Pyrimidines20 dUMP kinase DUMP + ATP ↔ DUDP + ADP 526 0
THF02 methylene THF dehydrogenase METTHF + NADP ↔ METHF + NADPH 8445 59
THF03 methenyl tetrahydrofolate cyclehydrolase METHF ↔FTHF 8445 59
Lipids01 acetyl-CoA carboxylase ACCOA + ATP + CO2 ↔ MALCOA + ADP + PI 1243 8
Lipids02 malonyl-CoA:ACP transacylase MALCOA + ACP ↔ MALACP + COA 1243 8
Lipids03 b-ketoacyl-ACP synthase MALACP → ACACP + CO2 1243 8
Lipids04 acetyl-CoA:ACP transacylase ACACP + COA ↔ ACP + ACCOA 1243 8
Lipids10 glycerol-3-phosphate dehydrogenase T3P2 + NADH ↔ GL3P + NAD 8163 100
Isoprenoids01 aldose reductase GL + NADP ↔ GLAL + NADPH 7278 100
Isoprenoids02 glyceraldehyde kinase GLAL + ATP → T3P1 + ADP 7278 100
NAD05 NAD kinase NAD + ATP → NADP + ADP 1174 0
NAD06 NADP phosphatase NADP → NAD + PI 1174 0
PolyPI01 pyrophosphatase PPI → 2 PI 1561 0
PolyPI02 polyphosphate kinase 1000 ATP ↔ 1000 ADP + POLYP 1144 13
PolyPI03 polyphosphatase POLYP → 1000 PI 1144 13
Glycerol01 glycerol kinase GL + ATP ↔ GL3P + ADP (7278) (100)
Glycerol02 glycerol-3-phosphate dehydrogenase GL3P + FAD → T3P2 + FADH2 2905 39
Transport10 glucose transport GLCext ↔ GLC 11 455 100
Transport11 carbon dioxide transport CO2ext ↔ CO2 (11 455) (100)
P3HB_syn_1 β-ketothiolase 2 ACCOA → COA + ACETOCOA 11 455 100
P3HB_syn_2 acetoacetyl-CoA reductase ACETOCOA + NADPH → C4COA + NADP 11 455 100
P3HB_syn_3 P(3HB) synthase C4COA → P(3HB) + COA 11 455 100

aParentheses () indicates reactions in the negative direction.
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The ranges of ΔGr and the concomitant ΔGr
d have been

calculated for the 89 substitutable reactions.
Three reactions catalyzed by malic enzyme, pyrophosphatase,

and NADP phosphatase appearing in 6483 pathways have been
determined to be thermodynamically unfavorable: Both of their
(ΔGr)min and (ΔGr)max values are positive. Rationally, the pathways
with those reaction steps are regarded thermodynamically less
dominant, and therefore, ranked lower than the remaining ones.
The current work indicates that the number of stoichiometri-

cally feasible pathways leading to the maximal theoretical yield of
P(3HB) production is on the order of 104 for the metabolic
network comprising 310 reactions. Table 5 lists the number of
pathways, containing the essential and the substitutable reactions
in generating the optimal overall reactions. The reactions that are
essential for maximal P(3HB) production are those included in
all 11 455 identified pathways. As depicted in Figure 2, the
reactions contained in the thermodynamically dominant 100
pathways, which are ∼1% of the total pathways, are examined to
investigate the important reaction steps and their fluxes for the
maximal production of P(3HB). This result may also contribute
to the reduction of the errors of the study that arise from the
uncertainties involved in the estimation of thermodynamic
properties. The frequency of reactions in the thermodynamically
dominant pathways is revealed through the color of arrows
changing from yellow to red in Figure 2. The frequency number
represents the presence ratio of the reaction in the
thermodynamically dominant 100 pathways to that in all the
stoichiometrically feasible pathways.

■ DISCUSSION

The graph-theoretic approach based on P-graphs not only
reduces the combinatorial complexity, but also provides a deeper
understanding of the metabolic networks. As can be observed in
Figure 1, Gly 2 and Gly 3 are represented as two separate
reactions by different enzymes in the opposite directions. The
P-graph approach may present exchange fluxes in this futile
cycle, in addition to their net flux, while only the net flux can be
identified in MFA. The physiological meaning of this futile cycle
can be further consulted elsewhere.23

The complete set of ranked pathways has been identified to
facilitate the experimental design of gene regulation. The results
depicted in Figure 2 reveal the thermodynamically important
reactions for this goal. Most noticeably in the middle part of the
figure, some of the reactions producing pyruvate and acetyl-CoA,
which are the precursors of P(3HB), are found to appear
frequently in the thermodynamically dominant pathways. The
mez2 and Diss_Pyruvate 04 reactions appear, respectively, at 2.5
and 1.7 times of the average frequency. In the previous work,
Hong and his co-workers19 presented the significance of the eda
reaction, along with that of the aforementioned two precursors.
They have attributed this to the requirement of NADPH in the
P(3HB) biosynthesis flux. The eda reaction by 2-Keto-3-deoxy-
6-phosphogluconate aldolase, however, is not exceptionally
favored in the thermodynamically dominant pathways. Note
on the upper left side of Figure 2, that the cyclic reactions
containing the Isoprenoids01 reaction by Aldose reductase,

Figure 2.Metabolic reactions in the thermodynamically dominant 100 pathways for maximal P(3HB) production in E. coli. The thickness of each arrow
indicates the average flux, and the color indicates the presence ratio of the reaction in the 100 pathways to that in all of the stoichiometrically feasible
pathways. The yellow to red colors in the color bar indicate the increase in the ratio from 0 to 3. The full names of metabolites are listed in the Supporting
Information.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie300652h | Ind. Eng. Chem. Res. 2013, 52, 222−229227

http://pubs.acs.org/action/showImage?doi=10.1021/ie300652h&iName=master.img-001.jpg&w=425&h=326


appear∼1.5−2.1 timesmore often in∼1% of thermodynamically
dominant pathways than the average. Summation over these
reactions reveals that this cyclic pathway contributes to the
production of the NADPH, performing the similar role as the eda
reaction in the P(3HB) biosynthesis. It should be noted that this
study does not include the other metabolic reactions in E. coli
(e.g., the production of biomass) that are competing with the
P(3HB) biosynthesis pathway. Thus, the results can be further
reinforced by enhancing the overall reactions. Nevertheless, even
neglecting the accurate prediction of metabolic behaviors, the
important reactions for the P(3HB) biosynthesis could be
thoroughly identified based on the mass balances and the
thermodynamic principles.

■ CONCLUSION
The efficacy of the proposed strategy has been ascertained
through the exploration of two E. coli models. For both models,
the sets of stoichiometrically feasible pathways leading to their
respective optimal overall reactions have been exhaustively
identified on a PC of moderate size by resorting to the graph-
theoretic method, based on process graphs (P-graphs).
Subsequently, these pathways have been differentiated by
determining the thermodynamically dominant pathways
among the feasible pathways on the basis of the Gibbs
free-energy changes of reactions in the pathways. The
proposed approach will contribute to understanding bio-
chemical networks and facilitating the experimental design
of gene regulation for enhanced production of the desired
product.

■ APPENDIX A. P-GRAPH APPROACH FOR
METABOLIC NETWORK

P-Graph
P-graph was developed for the algorithmic network synthesis
of chemical processes.24 It is comprised of the nodes of
materials and operating units shown in Figure A.1. For metabolic

networks, the role of operating nodes is played by metabolic
reactions, and the materials are enzymes and nutrients. The
nodes are connected with directed arcs, which indicate the
direction of reaction pathways, and connection rules are
expressed with the following axioms:18

(a) Six axioms of feasible reaction pathways
(R1) Every final product (target) is totally produced
by the reaction steps represented in the pathway.
(R2) Every starting reactant (precursor) is totally
consumed by the reaction steps represented in the
pathway.
(R3) Every active intermediate produced by any
reaction step represented in the pathway is totally
consumed by one or more reaction steps in the
pathway; and every active intermediate consumed
by any reaction step represented in the pathway is
totally produced by one or more reaction steps in
the pathway.
(R4) All reaction steps represented in the pathway
are defined a priori.
(R5) The network representing the pathway is
acyclic.
(R6) At least one elementary-reaction step
represented in the pathway activates a starting
reactant (precursor).

(b) Seven axioms of the combinatorially feasible reaction
networks

(T1) Every final product (target) is represented in
the network.
(T2) Every starting reactant (precursor) is
represented in the network.
(T3) Each reaction step represented in the network
is defined a priori.
(T4) Every active species represented in the
network has at least one path leading to a final
product (target) of the overall reaction.
(T5) A reactant of any elementary reaction
represented in the reaction network is a starting
reactant (precursor), if it is not produced by any
reaction step represented in the network.
(T7) The network includes, at most, either the
forward or reverse step of each elementary reaction
represented in the network.

In this way, syntactic and semantic contents of biochemical
networks may be described and implemented in algorithms.
Maximal Structure
The maximal structure of a network is generated by identifying
input and output materials of operating units, and then merging
all the common material nodes. Accordingly, it contains all the
combinatorially feasible pathways.
Stoichiometrically Feasible Pathways
Combinatorially feasible pathways of a network, which are
subsets of the maximal structure, are generated based on the
names of input and output materials. By further imposing
stoichiometric ratios of metabolic reactions and mass balance
constraints, stoichiometrically feasible pathways are obtained as
the candidate solutions of network synthesis. In process
networks, the most economical structure among them is selected
as a solution network.
Algorithm PBT
Identification of metabolic pathways is different from designing a
chemical process in that the former do not have measurable
economic costs of reactions, unlike the latter, where each
operating unit has operating and investment costs. This attribute
is responsible for the generation of cyclic or dependent pathways
during the calculation of solution pathways, which all produce a
predefined overall reaction. It is worth noting that the desired

Figure A.1. P-graph representation for reaction A+B → C. O(1) is a
reaction node, and M(A), M(B), and M(C) are material nodes.
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overall reaction should be calculated by linear programming.
While the cyclic pathways frustrate the successful calculation of
feasible pathways, generating linear combinations of independ-
ent pathways is unnecessary and raises the computational
burden. Therefore, a Pathway Back-Tracking algorithm (algo-
rithm PBT) is developed to generate the complete set of acyclic
and independent feasible pathways by discriminating cyclic and
dependent pathways during computation.
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