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Effective Modeling for Process Synthesis
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Abstrtut Most ftequently, proces synthesis is executed by resorting to mathematical
prcgralming. Nevertheles, its most crucial step, ie., tle genemtion of the mathen'atical
model, h6 ben ldgely ignored. The present contribuiion demonshates that the mthemtical
model genemted in algorthmic process synthesis bded on mthematical prcgMing affects
profoundly the quality of lhe solulion ad the necesdy computational time. It h6 been
illust"t€d $at the P-graph fi'amework gives rise to a consistent methodology for geneEting ihe
maiiematicat modet md irs solution.
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INTRODUCTION

Process sy*hesis is one of the most, ifnot the
most, impofla]lt steps in designing atry production
prccess includmg chemical processes; it iffmensely
affects the quality of solution. lt is comrnon to rcsoft
to a mathernatica.l-prograDming O{ILP or MNLP)
method in executing process synthesis. For such a
method, th€ malhematical model ofany process s],n-
thesis problem needs to be couched in the parlance
of MILP or MINLP (see Fig. 1). In practice, however,
a process sldthesis problem is seldom presented as
such. Hence, its rathenatical model must be denved
fiom drc original definition of process synthesis
problerns. For example, a separation-network syr-
thesis (SNS) problem is given as illustrdted in Fig. 2.
In this SNS problem, the optimal network of shalp
separators, dividers, and mixers must be detemined
for two three-cornponent feed srearns and thrce pule
product steams where the cost of a network is the
sum of costs of the sepamiors. Thus, at the outset,
the mathenlatical model needs to be generaled fol-
lowed by its solution, thereby indicating that the
model genemtron is the key to process s],nthesis; the
quality of the solution depends on the resultant
model. It appears that the available litemture on
process synthesis is void of model genemtion; the
model genemtion for Focess s)afhesis, ,:a, the gen-
eration of the appropriate MILP or MINLP model, is
treated only in a limited number ofpapers (Kovacs e,
aI,2000). The rnain emphasis of the current coniri-
bution is on model gereration (see Fig. 3).

l€t us now suppose that a process s)4rthesis
problem is ftamed by specifying a set of potential
feed streams (mw materials) ard product shearns to-
gether r,eith the rnathematical models of plausible
opemting umts. The problem aims at the gen€ration
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Fig. l. Conventional mathematical programing.
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Fig.2. Dcfmition of a simple sepdalior-network synlhesis

or identification of the optimal network of operating
units through optimization. It has been repealeilly
alemonstrated that various mathematical models ofa
given process s),nthesis prcblem may result in solu-
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Fig.3. Main steps ofalgonrhmic process slnthesis.

tions wilh significandy different values of the cost
function. Thus, it is ofthe utrnost importance that the
mathernatical model generated indeed lelds the op-
timal solution of the process s)'nthesis ploblem as
originally Aamed

Process synthesis is initiated most conmonly
by constructing the so-called super-sfuctwe, which
in tum, gives rise to the mathematical model nesos-
sary for idenlifying he optirnal solulion (see Fig. 4).
It is, therefore, essential that ihe structure or network
of the optimal solution be contained in the super-
stucture; otheMise, the optimality of the resultant
solution cannot be assued. A paramehic sfudy of a
simple class ofprccess synthesis t'ioblems will illus-
trate that such a super-stuctue cannot be generated
readily.

PARAMETRIC STUDY OF ASIMPLE CLASS OF
PROCESS SYNTHESIS PROBLEMS

Kovacs et al (1998) have analyzed the set of
potentially opthral networks for separation-network
q&thesis problerns with two three-component feed
sheams and three pure product streams $/ith simple
sha4) separalors. dividers, and mixers {see Fig. 5}.
lhe sum of$e cosls of its separalors is regarded as
the cost of the network. By following the usual con-
vention, the cost ofa sepamtor for sepaJatin between

Fig.4. Al8orithmic proc€ss syrtlesis baed on a supu-
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Fis. 5. Class I SNS probl€rs.

components i and (,+1) is computed by the formul4
(f D)", (1)

where jfis the mass load tfuough the separato! r,,
the degee of difficulty of the sepamtion between
components i and (r+l); and D, a constant between 0
and 1. (For simplicity, , is taten to be 0.6). This
class of Foblems will be called the ciass I SNS
pfoblems. Note that the process synthesis problem as
defned in Fig. 2 is orc instance of the class I SNS
problems.

As illustrated in Fig. 6, fourteen possible
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Network 2

Nettlo* 6

Fis. 6. Ferlible networks ofthe class t SNS problens.
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Fig. 6 (confd).

Table l. Food steam to ts ofthe fourteen networks ofFig.
6 that ar€.the optimal solutions for the respective
SNS proble s.

shuctures emerge for this cle6s of SNS problerns
G<ovacs et al., 1998). A pammetric study of it has
indicated that ten of these fou.teen fletworks can be
optimal depending on the values of the problem's pa-
rameters (see Table 1), A5 can be seen on lig. 6, the
ottly difference between network 3 and 4 is dlat
feed Fl ofth€ former is the same as feed F2 for the
latter and vic€ versa. Similarly, such is the case be-
tween networks 5 and 6r between networks 7 and 8,
between networks 9 atrd 10, between networks 11
and 12 and between networks 13 and 14.

Natumlly, two separato$ arc sufficient to solve
any instance of the class 1 SNS problems: Tbree
pule components arc to be genemted ftom two three-
compone feed streams. The cost fnction adopted
is concave for any sepamtor. It is, therefore, ex-
pected that tbree or more sepamto$, ie, redundancy,
cannot give dse to the optimality. Among the ten
networks that are optimal under various circum-
stances, however, two tretworks contain two separa-
tors each; and eight networks, thre€ sepamtors each.
Hence, eight network contain rcdundant separatofi;

these are networks 5 thrcugh 12. Moreover, in each
of the fout networks among them, including net-
works 5 tfuough 8, the rcdunda.nt sepamtorc are on a
path between a feed and a product. In other words,
for some instances of the class I SNS Foblems, the
optimal solutions based on the mathenatical model,
which excludes rcdundancy, are not optinal solu-
tions of the s),nthesis probl€ms as originally 6?1n€d
Kovacs et ol., 1998). Moreover, the inclusion of a
loop in an optimal separation network ofthe class I
SNS pmblems is unexpected (Floudas, 1987). Ap-
parentl, it is conv€ntional wisdom that a loop in this
class of sepa-ratiotr netwo*s leads to inconsequential
or pu4)oseless hansport ofa stream around the net-
work. This is obviously dehimental to the network's
performance and increases its cost, thereby prevent-
ing the rctwork to be optimal. On the contrary, four
of the ten optimal sepamtion networks involve loop-
ing. This implies that the optimal solution obtained
Aom the mathematical model excluding loops for the
class 1 SNS prcblerns is not the optimal solutions for
some of the SNS problems as originally ftamed
(Kovacs et a/., 1993). Coisequendy, the optimal so-
lution of any instarce of the class I SNS Foblems
can be attained only if the super-structure on which
the rnathematical model is based includes all poten-
tially optimal n€twork. It is the union of the ter n€t-
works (see Fig. 7).

In an SNS Foblem for generating multicompo-
Dent product stleajns ftom multicomponent leed
stsearns, it is olten possible to blpass certain
amounts of feed stleams to some prcduct sftealns. If
lhe cost of blpassing is negligibly small. it is ex-
pected tllat th€ extent ofb)?assing woild be always
maximal h an optirul solution. Nevertieless, an ex-
ample is given by Ko\€cs et al (1995) to illushate
that this is not alwals the case: Even when the cost
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Fig. 7. Rigorous supeFstructure for tle clds I SNS prcblem.

ofb)?assing is zero, it may affect the network struc-
tule, thus may resulthg in an increase in the net-
work's cost, v/hich ollsets any advantage gained
ftom bwassing. Table 2 sunrnarizes the results of
analysis by Kovacs et al. (1998) in temN of the
structural pmperties of optimal sepamtion networks.
Consequendy, these properties have to be taken into
accountm genemtrng asuper-structue.

RIGOROUS SUPER-STRUCTURE

lf a super-structure is incomplete, the rcsultant
rnathematical model is also incomplete. As such, dre
attainment of optimality carmot be assued, and most
often it is the case. Ifit is assumed that no more thal
the ten networks listed in Table I can be optirral for
any iDsLances ofthe class I SNS problems. the union
ol these networks (see Fig. 7) always include the
network of the optinal solution. H€nce, if the
mathematical model is based on this super-struchre,
the optifiality ofthe solution is as$ned.

Definition: Suppose that a systematic procedure
is available so ihat a %lid mathematical-
orosrammins model car be qenemted for a nehrork
of Li. giuen-openrmg rrnrts. a ntrwork of rhes" ,.,p-
erating units is defined to be a rigorous super-
stnrcture of a class of process s),nthesis problem if
the optirnality of the resultanl solution carurot be im-
proved for any irstance of this class of problenrs by
any other pmcedure for network and model genem-
tion.

Hence, the network depicted in Fig. 7 is a ng-
orous super-structurc of the class I SNS problems,
provided that a valid rnathematical model ca$ be
generated ftom it !.eith an available procedure. Dif-
ferenl l)?es of malhemahcal models may gives rise
to the same optimality; nevefheless; the effort re-
quired for thei solution can vary. To achieve the
maximum efficiency for synthesis, it is rnandatory
that the methoG for genemting the rnathematical
models and those for drcir solution be determined
collectively.

P€RAPH FRAMEWORK

The P-graph frame\sork has been established
for ihe effective integmtion of model-genemtion and
solution in process-network synthesis (PNS). The
fi-amewo* includes a specific ne!,ro* represetrta-
tion and algoridms.

Conventional graphs are suitable for analyzing
a process structurei however. such graphs are inca-
pable of uniquely representmg Focess structures in
prccess Slnthesis @iedler et al., 1992a). Thus, a
specjal direcled biparrite graph, P-graph, has been in-
foduced to circumvent this difEculty. It is bipartite
since its vetices arc partitioned into two steps, and
no two vertices in the same set are adjacent in the
graph. Vertic€s in one of the parritiors are for repre-
senting opemting units, and those in the other is for
representing mate.ials. Stated formally, let finite sets
r, and o be given with

oE[c(n)x (ta(n). (2)

A P-graph is defined to be pair (2, o) where the ver-
tices ofthe graph arc the elements of/r\-,o. Th€ arcs
ofthe graph are the elements ofset AluA2 wherc

Al= {(n))t ), = (d,p)eo andrea} and (3)

A2= {(t,x)t y = (a,p)eo and xefr. (4)

A silnple P-graph is shown on Fig. 8.

Combinatorial properties of process netwoaks
in process synthesis

Let .41be a given finite set of all rnaterial spe-
cies, or materials in short, which are to be involved

Table2. Surunarf of structDral properties of optiml sepution network.

M
MultiDle Sinsle

Recyclins

Bwassinc
impossible possible

'Manml bt?ass is nor rtressanly optimal.
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Axioms and lheir relations to the MINLP model

It is usually assumed in the available lirera$re
that a process slnthesis problem can appropiately be
formulated as a MINLP problem. Now suppose that
the following MINLP model describes rigorously a
process s),nthesis problem.

rnl[ f (r,y)

s.t.  nfty)=0, (6)

Fig. 8. Sirple P-gmph.

Fig. 9. Shctural parts ofa simple PNS problem.

in the synthesis of a process system. Suppose that a
process network s],nthesis problem is specfied by
hiplet (Pn,O) where P (cr4 is the set ofproducts to
be produced; R(c,41), the set of available mw materi-
als; and O, the set ofoperating units. IfP-$aph (n,o)
is the network or structure of a feasible solution of
PNS problem (P,R,O), it must satisfy certain proper-
ties. These properties arc stated as axioDs of combi-
natorially feasible process networks (Friedler €t dl,
1992a, 1998).

Axioms of combinatorially feasible process
structures

(S1) Every fmal product is represented in the stluc-

(S2) A rnaterial represented in the shuctwe is a raw
material if and only ifit is not an output of any
operating unit represented in the struch[e.

(S3) Every operating unit represented in the struc-
ture is defined in the s],nthesis problem.

(S4) AIly operating unit represented in the structue
has al least one path leading ro a produc

(S5) If a material tjelongs to the structure, it mlst be
an input to or output from at least ore opemt-
ing unit represented in the structue.

c(',v) < o, (7)
xeR.', y€integer. (8)

Naturally, if?-graph (th,o) is the structure of a
feasible solution of process network s'.nthesis prob-
lem (P,R,O), drcn drc synthesized process must pro-
duce each product irvolved in set P. In the structure
ofthis process, therefore, every fmal product must be
replesented; otherwise, the process is infeasible. The
requiremenr for producrng every product appears in
the MINLP mod€l as a constraint on the rcquired
amount to be Foduced. Consequently, every product
appears in the process nework. and Lherefore, axiom
(Sl) musl be sarisfied. Axiom (Sl), therefore, is em.
bedded implicitly in th€ MINLP model. This state-
ment is valid for all the remaining axioms. Conse-
quently, we have a collection ofnetwork' prcperties
of feasible solutions ofa PNS prcblem. For example,
for the PNS problem specified on Fig. 9, nin€teen
network of Lbe opemring unrts sadsry $e five axi-
oms, ,.e., only these nineteen networks must be taken
into accomt in solying the PNS problem (see Fig.
l0). Another example appearcd in Fiedler et al.
(1993) for q.nthesizing a process network ftom 35
plausible openting units. For this example, the num-
ber of possible networks is 2iJ-1!34 billion. The
five axioms reduce this search spac€ to 3465, r:e., it
is sufficient to take into account only these 3465
networks in s),nthesizing the process. Natually, a
question adses as to the possibility of reducing the
search space furdrcr by resorting to an additiorlal
combinatorial axiom or axioms. The arswer is nega-
tive: any ofthe 3465 networks can be optimal under
certain pall"mete$ and constraints of the problem.

Rigorous super.structure: maximal structure

Suppose that S(P"R,O) damtes the set of all
combinatorially feasible networks of PNS problem
@,n,O). fhe union of all combinaiorially feasible
networks. i.e.. network

p(P,R,o)= l)o
o.s\P.R.o)

is a rigorous super-structure for PNS problem
(P,1R,O); it is called as maximal sftcture. It has been
proved in Fdedler et al. (1992a\ that the union of

(e)

\ , /  1 \ , /
T" t' T'
r i J
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two conibinatorially feasible n€tworks is also combi_
natorially feasible. i.e.. if or cs(p.R,O) and or
€S(PJR,O). then orwo,eS(P"R,O) isalso }?lrd. Lon-
sequendy, a raxirnal stuctur€ is also cohbinatod_
dly feasible trerwork of rhe problerl j.".,
p(P.R.O)3SIPR.O| On rhe basis oi rtr;. propeny.
,:. .l.xl"Tl slruchue car be generated algorittud_
cally_ rn pol)momral rlme (Friedler er al, 1993). Al_
gonthm SSG, has been inhoduced in Friedler er al
(1992b, 1995) for genemtilg the elements of set
S(P.R.O). r:e. rhe set of ajl combinarorially feasible
nerworks. Algonrhns MSG and SSG Loge$er is
corsidered to be ihe first procedue for algorithmic
process nerwork s)mtiesis {see Fig. I I). Even though
thls proceduie js proved lo be effective, it can be nr_
ther imFoved by the accelerated branch-and-bound
a.lgoritbm of PNS (Fiedler et at., 1996), i.e., algo-
rithm ABB (see Fig. 12). Furiher information related
lo P-graphs is available on home-page \sw.p-
gmph.com: also see Pete.s et at. l2}cjj.

Optim.t sotudo!(,)

Fig. 12 Algorithmic process synrhesrs with Lhe acceterar€d
brech-ard-bood atgorithm

CONCLUSION

Tbe difficulty of algoritlnjc process svnthesis
has been iilusu'akd by analyzing one of the srmplest
classes of sepamtion-network sylthesis problems. It
has been shown that the selection of th" "up"r_
struchue affects the quality of the solution based oll
the nathematical model generaled ftom this super_
stucture. A brief discou$e is given to indicate that
the P-graph framework bas been proven, in general,
lo offer a consistenl merhodology ior the algondunic
process sjlnthesis,
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NOMENCLATURE

I set ofarcs ofa P-graph
, consiant between 0 and 1
,i degree of difiiculty of the separation be-

tween components i and (r+l)

/ nass load ifuougl a separator
(.,o) P-gaph
n, M set ofmaterials
MILP miled-integerlinearprograruning
MINLP mixed-irtegernonlinearprogranuning
o, O set ofopenting units
P set ofproducts

synthesis problem defrned by the spe-
cific sets of products (P), Iaw materials
(R), and operating units (O)
set of mw mate.ials
real /,-dimensional vector space
sepamtion network synthesis
set of combinatorially feasible process
structues for slrrfiesis problem (P,R,O)
axioms of combinatorially feasible sfuc-

Greek symbols

p e,n,O) maxinal structure for s)'nthesis problem
(P,,\,O)

o solution-shuchre

Mathematical symbols

p Power-set
x Cartesian product
{ }  s e t
c subset or subgmph
u union ofsets or gmphs
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