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Abstract—Most frequently, process synthesis is executed by resorting to mathematical
programming. Nevertheless, its most crucial step, i.e., the generation of the mathematical
model, has been largely ignored. The present contribution demonstrates that the mathematical
model generated in algorithmic process synthesis based on mathematical programming affects
profoundly the quality of the solution and the necessary computational time. It has been
illustrated that the P-graph framework gives rise to a consistent methodology for generating the

mathematical model and its solution.
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INTRODUCTION

Process synthesis is one of the most, if not the
most, important steps in designing any production
process including chemical processes; it immensely
affects the quality of solution. It is common to resort
to a mathematical-programming (MILP or MINLP)
method in executing process synthesis. For such a
method, the mathematical model of any process syn-
thesis problem needs to be couched in the parlance
of MILP or MINLP (see Fig. 1). In practice, however,
a process synthesis problem is seldom presented as
such. Hence, its mathematical model must be derived
from the original definition of process synthesis
problems. For example, a separation-network syn-
thesis (SNS) problem is given as illustrated in Fig. 2.
In this SNS problem, the optimal network of sharp
separators, dividers, and mixers must be determined
for two three-component feed streams and three pure
product streams where the cost of a network is the
sum of costs of the separators. Thus, at the outset,
the mathematical model needs to be generated fol-
lowed by its solution, thereby indicating that the
model generation is the key to process synthesis; the
quality of the solution depends on the resultant
model. It appears that the available literature on
process synthesis is void of model generation; the
model generation for process synthesis, i.e., the gen-
eration of the appropriate MILP or MINLP model, is
treated only in a limited number of papers (Kovacs et
al., 2000). The main emphasis of the current contri-
bution is on model generation (see Fig. 3).

Let us now suppose that a process synthesis
problem is framed by specifying a set of potential
feed streams (raw materials) and product streams to-
gether with the mathematical models of plausible
operating units. The problem aims at the generation
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Fig. 1. Conventional mathematical programming.
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Fig. 2. Definition of a simple separation-network synthesis
problem.

or identification of the optimal network of operating
units through optimization. It has been repeatedly
demonstrated that various mathematical models of a
given process synthesis problem may result in solu-
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Fig. 3. Main steps of algorithmic process synthesis.

tions with significantly different values of the cost
function. Thus, it is of the utmost importance that the
mathematical model generated indeed yields the op-
timal solution of the process synthesis problem as
originally framed.

Process synthesis is initiated most commonly
by constructing the so-called super-structure, which
in turn, gives rise to the mathematical model neces-
sary for identifying the optimal solution (see Fig. 4).
It is, therefore, essential that the structure or network
of the optimal solution be contained in the super-
structure; otherwise, the optimality of the resultant
solution cannot be assured. A parametric study of a
simple class of process synthesis problems will illus-
trate that such a super-structure cannot be generated
readily.

PARAMETRIC STUDY OF A SIMPLE CLASS OF
PROCESS SYNTHESIS PROBLEMS

Kovacs et al. (1998) have analyzed the set of
potentially optimal networks for separation-network
synthesis problems with two three-component feed
streams and three pure product streams with simple
sharp separators, dividers, and mixers (see Fig. 5).
The sum of the costs of its separators is regarded as
the cost of the network. By following the usual con-
vention, the cost of a separator for separatin between
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Fig. 4. Algorithmic process synthesis based on a super-
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Fig. 5. Class 1 SNS problems.

components 7 and (i+1) is computed by the formula,

(DY, : 1
where f is the mass load through the separator; D;,
the degree of difficulty of the separation between
components { and (#+1); and b, a constant between 0
and 1. (For simplicity, b is taken to be 0.6). This
class of problems will be called the class 1 SNS
problems. Note that the process synthesis problem as
defined in Fig. 2 is one instance of the class 1 SNS
problems. _

As illustrated in Fig. 6, fourteen possible
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Fig. 6. Feasible networks of the class 1 SNS problems.
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Network 13

Network 14

Fig. 6 (cont’d).

Table 1. Feed streams to ten of the fourteen networks of Fig.
6 that are the optimal solutions for the respective

SNS problems.

Fl E2 Optimal Network
[130,1,100] [100,50,30] network 1
[1,50,100] [100,1,200] network 2
[200,1,100] [5,10,100] network 5
[5,10,100] [200,1,100] network 6
[100,10,5] [100,1,200] network 7
[100,1,200] [100,10,5] network 8
[200,1,100] [1,1,100] network 9
[1,1,100] [200,1,100] network 10
[100,2,2] [100,1,200] network 11

~[100,1,200] [100,2,2] network 12

structures emerge for this class of SNS problems
(Kovacs et al., 1998). A parametric study of it has
indicated that ten of these fourteen networks can be
optimal depending on the values of the problem’s pa-
rameters (see Table 1). As can be seen on Fig. 6, the
only difference between networks 3 and 4 is that
feed F1 of the former is the same as feed F2 for the
latter and vice versa. Similarly, such is the case be-
tween networks 5 and 6, between networks 7 and 8,
between networks 9 and 10, between networks 11
and 12 and between networks 13 and 14.

Naturally, two separators are sufficient to solve
any instance of the class 1 SNS problems: Three
pure components are to be generated from two three-
component feed streams. The cost function adopted
is concave for any separator. It is, therefore, ex-
pected that three or more separators, i.e., redundancy,
cannot give rise to the optimality. Among the ten
networks that are optimal under various circum-
stances, however, two networks contain two separa-
tors each; and eight networks, three separators each.
Hence, eight networks contain redundant separators;

these are networks 5 through 12. Moreover, in each
of the four networks among them, including net-
works 5 through 8, the redundant separators are on a
path between a feed and a product. In other words,
for some instances of the class 1 SNS problems, the
optimal solutions based on the mathematical model,
which excludes redundancy, are not optimal solu-
tions of the synthesis problems as originally framed
(Kovacs et al., 1998). Moreover, the inclusion of a
loop in an optimal separation network of the class 1
SNS problems is unexpected (Floudas, 1987). Ap-
parently, it is conventional wisdom that a loop in this
class of separation networks leads to inconsequential
or purposeless transport of a stream around the net-
work. This is obviously detrimental to the network’s
performance and increases its cost, thereby prevent-
ing the network to be optimal. On the contrary, four
of the ten optimal separation networks involve loop-
ing. This implies that the optimal solution obtained
from the mathematical model excluding loops for the
class 1 SNS problems is not the optimal solutions for
some of the SNS problems as originally framed
(Kovacs et al., 1993). Consequently, the optimal so-
lution of any instance of the class 1 SNS problems
can be attained only if the super-structure on which
the mathematical model is based includes all poten-
tially optimal networks. It is the union of the ten net-
works (see Fig. 7).

In an SNS problem for generating multicompo-
nent product streams from multicomponent feed
streams, it is often possible to bypass certain
amounts of feed streams to some product streams. If
the cost of bypassing is negligibly small, it is ex-
pected that the extent of bypassing would be always
maximal in an optimal solution. Nevertheless, an ex-
ample is given by Kovacs ef al. (1995) to illustrate
that this is not always the case: Even when the cost
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Fig. 7. Rigorous super-structure for the class 1 SNS problems.

of bypassing is zero, it may affect the network struc-
ture, thus may resulting in an increase in the net-
work’s cost, which offsets any advantage gained
from bypassing. Table 2 summarizes the results of
analysis by Kovacs et al. (1998) in terms of the
structural properties of optimal separation networks.
Consequently, these properties have to be taken into
account in generating a super-structure.

RIGOROUS SUPER-STRUCTURE

If a super-structure is incomplete, the resultant
mathematical model is also incomplete. As such, the
attainment of optimality cannot be assured, and most
often it is the case. If it is assumed that no more than
the ten networks listed in Table 1 can be optimal for
any instances of the class 1 SNS problems, the union
of these networks (see Fig. 7) always include the
network of the optimal solution. Hence, if the
mathematical model is based on this super-structure,
the optimality of the solution is assured.

Definition: Suppose that a systematic procedure
is available so that a wvalid mathematical-
programming model can be generated for a network
of the given operating units. A network of these op-
erating units is defined to be a rigorous super-
structure of a class of process synthesis problem if
the optimality of the resultant solution cannot be im-
proved for any instance of this class of problems by
any other procedure for network and model genera-
tion.

Hence, the network depicted in Fig. 7 is a rig-
orous super-structure of the class 1 SNS problems,
provided that a valid mathematical model can be
generated from it with an available procedure. Dif-
ferent types of mathematical models may gives rise
to the same optimality; nevertheless; the effort re-
quired for their solution can vary. To achieve the
maximum efficiency for synthesis, it is mandatory
that the methods for generating the mathematical
models and those for their solution be determined
collectively.

P-GRAPH FRAMEWORK

The P-graph framework has been established
for the effective integration of model-generation and
solution in process-network synthesis (PNS). The
framework includes a specific network representa-
tion and algorithms.

Conventional graphs are suitable for analyzing
a process structure; however, such graphs are inca-
pable of uniquely representing process structures in
process synthesis (Friedler et al., 1992a). Thus, a
special directed bipartite graph, P-graph, has been in-
troduced to circumvent this difficulty. It is bipartite
since its vertices are partitioned into two steps, and
no two vertices in the same set are adjacent in the
graph. Vertices in one of the partitions are for repre-
senting operating units, and those in the other is for
representing materials. Stated formally, let finite sets
m and o be given with

oc g (m)x go (m). @)
A P-graph is defined to be pair (1, o) where the ver-
tices of the graph are the elements of mUo. The arcs
of the graph are the elements of set A1LUA2 where

Al={(xy):y=(a,f)coandxea} and (3)

A2 = {(yx): y=(a,f)eo and xe 5}. (4)
A simple P-graph is shown on Fig. 8.

Combinatorial properties of process networks
in process synthesis

Let M be a given finite set of all material spe-
cies, or materials in short, which are to be involved

Table 2. Summary of structural properties of optimal separation networks.

Product Streams Pure Multicomponent
Feed streams Single Multiple Single Multiple
Recycling impossible possible possible possible
Redundancy impossible possible possible possible
Premixing impossible possible impossible possible
Bypassing impossible impossible possible® possible®

# Maximal bypass is not necessarily optimal.
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Fig. 8. Simple P-graph.
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Fig. 9. Structural parts of a simple PNS problem.

in the synthesis of a process system. Suppose that a
process network synthesis problem is specified by
triplet (P,R,0) where P (=M) is the set of products to
be produced; R(cM), the set of available raw materi-
als; and O, the set of operating units. If P-graph (m,0)
is the network or structure of a feasible solution of
PNS problem (P,R,0), it must satisfy certain proper-
ties. These properties are stated as axioms of combi-
natorially feasible process networks (Friedler et al.,
1992a, 1998).

Axioms of combinatorially feasible process
structures

(S1) Every final product is represented in the struc-
ture.

(52) A material represented in the structure is a raw
material if and only if it is not an output of any
operating unit represented in the structure.

(S3) Every operating unit represented in the struc-
ture is defined in the synthesis problem.

(S4) Any operating unit represented in the structure
has at least one path leading to a product.

(85) If a material belongs to the structure, it must be
an input to or output from at least one operat-
ing unit represented in the structure.

Axioms and their relations to the MINLP model

It is usually assumed in the available literature
that a process synthesis problem can appropriately be
formulated as a MINLP problem. Now suppose that
the following MINLP model describes rigorously a
process synthesis problem.

min  f(x.) ®)
st. Ay =0, (6)
gey) <0, ™
xeR", yeinteger. (8)

Naturally, if"P-graph (m,o0) is the structure of a
feasible solution of process network synthesis prob-
lem (P,R,0), then the synthesized process must pro-
duce each product involved in set P. In the structure
of this process, therefore, every final product must be
represented; otherwise, the process is infeasible. The
requirement for producing every product appears in
the MINLP model as a constraint on the required
amount to be produced. Consequently, every product
appears in the process network, and therefore, axiom
(S1) must be satisfied. Axiom (S1), therefore, is em-
bedded implicitly in the MINLP model. This state-
ment is valid for all the remaining axioms. Conse-
quently, we have a collection of networks’ properties
of feasible solutions of a PNS problem. For example,
for the PNS problem specified on Fig. 9, nineteen
networks of the operating units satisfy the five axi-
oms, i.e., only these nineteen networks must be taken
into account in solving the PNS problem (see Fig.
10). Another example appeared in Friedler et al.
(1993) for synthesizing a process network from 35
plausible operating units. For this example, the num-
ber of possible networks is 2*°~1~34 billion. The
five axioms reduce this search space to 3465, i.e., it
is sufficient to take into account only these 3465
networks in synthesizing the process. Naturally, a
question arises as to the possibility of reducing the
search space further by resorting to an additional
combinatorial axiom or axioms. The answer is nega-
tive: any of the 3465 networks can be optimal under
certain parameters and constraints of the problem.

Rigorous super-structure: maximal structure

Suppose that S(P,R,0) denotes the set of all
combinatorially feasible networks of PNS problem
(P,R,0). The union of all combinatorially feasible
networks, i.e., network

pPRO)= o ©)

ageS(P,R,0)
is a rigorous super-structure for PNS problem
(P.R,0); it is called as maximal structure, It has been
proved in Friedler et al. (1992a) that the union of
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Fig. 10.Combinatorially feasible networks of the problem given in Fig. 9.
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Fig. 11.Algorithmic process synthesis based on exhaustive
search.

two combinatorially feasible networks is also combi-
natorially feasible, i.e., if c€S(P,R,0) and o
€S(P,R,0), then 61U0,€S(P,R,0) is also valid. Con-
sequently, a maximal structure is also combinatori-
ally feasible network of the problem, ie,
H(P.R,0)eS(P,R,0). On the basis of this property,
the maximal structure can be generated algorithmi-
cally in polynomial time (Friedler et al., 1993). Al-
gorithm SSG, has been introduced in Friedler et al.
(1992b, 1995) for generating the elements of set
S(P,R,0), i.e., the set of all combinatorially feasible
networks. Algorithms MSG and SSG together is
considered to be the first procedure for algorithmic
process network synthesis (see Fig. 11). Even though
this procedure is proved to be effective, it can be fur-
ther improved by the accelerated branch-and-bound
algorithm of PNS (Friedler et al., 1996), i.e., algo-
rithm ABB (see Fig. 12). Further information related
to P-graphs is available on home-page www.p-
graph.com; also see Peters et al. (2003).

INPUT

Raw materials, operating units
and products
(constraints and cost functions)

MODEL G%NERATION

Generation of the maximal
structure and the mathematical
programming model
(Algorithm MSG)

SOLUTION OF THE MODEL

algorithm

Accelerated branch-and-bound J

Y
Optimal solution(s)

Fig. 12. Algorithmic process synthesis with the accelerated
branch-and-bound algorithm.

CONCLUSION

The difficulty of algorithmic process synthesis
has been illustrated by analyzing one of the simplest
classes of separation-network synthesis problems. It
has been shown that the selection of the super-
structure affects the quality of the solution based on
the mathematical model generated from this super-
structure. A brief discourse is given to indicate that
the P-graph framework has been proven, in general,
to offer a consistent methodology for the algorithmic
process synthesis.

ACKNOWLEDGEMENT

This contribution summarizes the unanticipated
but fundamentally important results from my long-

- lasting collaborative work with Dr. Fan. The finding

of such results is largely attributable to his unceasing
commitment to the development of modemn para-
digms for various fields of Chemical Engineering, in
general, and for process systems engineering, in par-
ticular.



*

490 J. Chin. Inst. Chem. Engrs., Vol. 37, No. 5, 2006

NOMENCLATURE

A set of arcs of a P-graph

b constant between 0 and 1

D; degree of difficulty of the separation be-
tween components 7 and (i+1)

i mass load through a separator

(m,o) P-graph

m, M set of materials

MILP mixed-integer linear programming

MINLP  mixed-integer nonlinear programming

0,0 set of operating units

o set of products

(P,R,0)  synthesis problem defined by the spe-
cific sets of products (P), raw materials
(R), and operating units (O)

R set of raw materials

R" real n-dimensional vector space

SNS separation network synthesis

S(P,R,0) set of combinatorially feasible process

structures for synthesis problem (P,R,0)
(S1), (S2), axioms of combinatorially feasible struc-
ey (S5) tures

Greek symbols
4 (P,R,0) maximal structure for synthesis problem
(P,R,0)

a solution-structure

Mathematical symbols

P power-set

X Cartesian product

{} set

(= subset or subgraph

v union of sets or graphs
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