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ABSTRACT

Recent insights into the nature of optimal separation-networks indicate a need to develop a rigorous technique
capable of generating the optimal solution of a separation-network synthesis (SNS) problem. In principle, an SNS
problem can be solved if an exact super-structure is available. Hitherto, no method has been established for
generating such a super-structure when multiple feed-streams are involved. Even when a super-structure is
complete, the corresponding mathematical-programming problem may not be solvable if it is unnecessarily
complex. Thus, the exact super-structure should be as simple as possible.

The present paper proposes an algorithm for generating an exact super-structure for the following class of SNS
problems: multiple feed-streams and multicomponent product-streams where the cost function of each separator is
linear with a fixed charge. It has been proved that the super-structure generated always includes the optimal
separation-network of this class of problems and that the super-structure does not include unnecessary operating

units. The proposed method have been demonstrated by successfully solving several problems.
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INTRODUCTION

Separation-network synthesis (SNS), a subfield of
process synthesis, is of mathematical interest as well
as of industrial significance: separation-networks are
omnipresent in almost all chemical processes.
Separation-networks contribute substantially to the
capital cost of an overall chemical process; therefore,
the development of a systematic framework and the
relevant model of this framework, which yield the
optimum network, is an important research issue.

It is essential for any algorithmic method of SNS
to have (i) a valid model, i.e., both the rigorous super-
structure and the corresponding mathematical-
programming model, and (ii) a global optimization
method to attain optimality.

Various unexpected optimal solutions obtained for
some simple classes of SNS problems illustrate the
difficulty involved in generating a valid
mathematical-programming model (see, e.g., Kovics
et al., 1993; and Kovacs et al., 1998a, Kovics ef al.,
1998b); they indicate that any mathematical-
programming model obtained from an incomplete
network structure may not yield the optimal solution
regardless of the optimization method adopted.

Correspondance concerning this paper should be
addressed to F. Friedler'.

The present paper proposes a highly efficient
method to resolve the dilemma, mentioned above;
specifically, it focuses on the generation of the
rigorous super-structure of an SNS problem for which
the cost functions of the separators are linear with
fixed charges. Based on this rigorous super-structure,
the optimal separation-network can be generated with
certainty.

PROBLEM SPECIFICATION

A set of multicomponent product-streams is to be
generated from multicomponent feed-streams by a
network of separators, dividers, and mixers. The
models and cost functions of the operating units are as
follows:

The components of the streams are in a ranked list
with respect to a given separation method (Hendry
and Hughes, 1972), which remains invariant over the
entire separation process. This list arranges the
components in decreasing order with respect to the
value of the physical property on which the separation
method is based,; it facilitates the representation of a
mixture and the identification of all possible sharp
separations between the adjacent key components.

Separator S’ performs a sharp separation between
components i and (i+1) of its inlet stream. In other
words, if its inlet stream contains components 1
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through », then its top outlet stream contains
components 1 through /, and its bottom outlet stream,
components (i+1) through n. The cost of an individual
separator is a linear function with a fixed charge, i.c.,
it is assumed to be given in the form,
Cost(S,)=a, + bx,, where b; signifies the degree of

difficulty of the i-th separation; x;, the mass load of
separator i; and a;, the fixed charge. The overall cost
of the separation-network is the sum of the costs of
individual separators in the network. In addition, the
cost of the dividers and mixers in the separation-
network are deemed negligible because their
contribution to the overall cost is nil: they are far less
costly than the separators. This type of models has
been adopted by several authors, e.g., Wehe and
Westerberg (1987); Floudas and Aggarwal (1990);
and Quesada and Grossmann (1995).

GENERATION OF THE RIGOROUS SUPER-
STRUCTURE

To initiate the super-structure generation of a
SNS problem for which the cost function of an
individual separator comprises the linear and fixed
charges, a simplified problem without the fixed
charge, i.e., the auxiliary problem, is solved first. The
feed-streams and product-streams of this auxiliary
problem are the same as those of the original SNS
problem. This class of SNS problems has been
investigated in Kovics et al. (1998b) where an
algorithmic solution of these problems is given.

The solution of the auxiliary problem is one of the
feasible solutions of the original SNS problem,
however, it may not be optimal. By denoting the set
of separators by H, the cost of this solution is
calculated according to the original cost function as

Cost, =S, +0,. , where S, =3 a, isthe sum of
ieH

the fixed charges and O, =3 bx, is the value of

ieH
the cost function of the optimal solution of the
auxiliary problem. Moreover, the following
inequality obviously holds between the cost of the
optimal solution, Costo,, and the cost of the optimal
solution of the auxiliary problem, Cost,,,:

Cost,, =S, +0,,2S,,+0,, =Cost,, 1
where So,r and Op,; are the sum of fixed charges and
variable charges for the optimal solution, respectively.
Naturally, the definition of O, leads to Opp-0,u.20;
this, in turn, yields the following inequality.

S 285 +(0,, -0,,)2 S, 2)

In other words, S, is an upper bound of the sum of
the fixed charges of the scparators in the optimal
solution of the original SNS problem.

A lower bound of the sum of the fixed charges for
a feasible solution, Sy.... can be calculated as the sum
of the fixed charges of those separators that must be
included in any solution of the SNS problem; in
general, Sy..s can be given as the sum of the fixed
charges of separators of each type. Thus, an upper
limit of the number of separators of type i in a
solution can be evaluated as

aux ?

{-M]M,(Sw) @)
a‘

where 1/(Syees) is the minimum number of type i
separators necessary for solving the SNS problem.,
and for any real number x, [x] denotes the greatest
integer less than or equal to x. The above expression
represents the number of separators of type i that
should be considered in the rigorous super-structure.
Finally, all appropriate connections must be
established between the separators.

EXAMPLES

Example 1. .

This example is taken from Wehe and Westerberg
(1987). In this SNS problem a three component feed-
stream is to be separated into two multicomponent
product-streams. The pertinent data are tabulated in
Tables 1 and 2; the cost of the best known solution is
15.6.

Table 1. Feed and product streams for Example 1.
A B C
F 10 | 10 | 10

P1 3 5 3
P2 7 5 7

Table 2. Cost data for Example 1.
‘ AB | BC
Fixed charge 3 5
Degree of difficulty | 0.6 1

The optimal solution of the auxiliary SNS
problem is given in Figure 1. Note that splitting
ratios (Kovacs et al., 1998b) are assigned to the
streams.

P1

Q

L=

P2

Figure 1. Optimal structure of the auxiliary SNS
problem of Example 1: it is also the optimal solution
of the problem.

For this example, S,.,=8 and Sy...=8 since one
separator of each type is required to solve the
problem. Consequently, the number of different types
of separators in the rigorous super-structure is:

separator of type 1: [(8-8)/3] +1 =1

separator of type 2: [(8-8)/5] +1=1
There are altogether 2 separators which must be
linked every possible way to generate the rigorous
super-structure which is depicted in Figure 2. The
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Figure 2. Rigorous super-structure of Example 1.

solution based on the super-structure generated is the
same as the optimal solution of the auxiliary SNS
problem, given in Figure 1, and the solution
published in Wehe and Westerberg (1987).

Example 2

This example is taken from Wehe and Westerberg
(1987); it is also published in Quesada and
Grossmann (1995). In this SNS problem, a five-
component feed-stream is to be separated into 4
multi-component product-streams. The pertinent data
are tabulated in Tables 3 and 4. First, the auxiliary
SNS problem is formulated and its optimal solution is
determined (see Figure 3), where its cost, O, is
62.177, while the overall cost of this network, i.e.,
Cost,,, is 111.177. Moreover, S,.,=49 and Sy...~23,
i.e., one separator of each type is required to solve the
problem. Thus, the number of different types of
separators in the rigorous super-structure is:

separator of type 1: [(49-23)/5]+1=5+1=6

separator of type 2: [(49-23)/9] + 1=2+1=3

separator of type 3: [(49-23)/3] +1=8+1=9

separator of type 4: [(49-23)/6] + 1 =4+1 =35

Table 3. Feed and product streams for Example 2.
A B C D E
F 32 1 16 | 20 | 25 | 24
P5 7 8 3
P6 10 3 5
P7 5 5 6
P8 10 - 6

Table 4. Cost data for Example 2.

AB | BC | CD | DE
Fixed charge 5 9 3 6

| Degree of difficulty | 0.5 1 104 ] 06

& IQlwn o
O |W]s |0

There are altogether 23 separators that must be
linked in every plausible way to generate the rigorous
super-structure.

Example 3

This example is taken from Wehe and Westerberg
(1987); it is also published in Quesada and
Grossmann (1995). In this SNS problem, a four-
component feed-stream is to be separated into three
multicomponent product-streams. The pertinent data

are tabulated in Tables 5 and 6. The optimal solution
of the auxiliary SNS problem is depicted in Figure 4.

P?

Figure 3. Optimal structure of the auxiliary SNS
problem of Example 2.

Table 5. Feed and product streams for Example 3.

A B C D
F 6 8 5 9
Pl 2 3 1 3
P2 1 4 1 5
P3 3 1 3 1
Table 6. Cost data for Example 3.
AB | BC | CD
Fixed charge 5 4 6
Degree of difficulty | 0.5 | 0.3 | 0.7

For this example, S,,=20 and Sy...~15, i.e., one
separator of each type is required to solve the
problem. Hence, the number of different types of
separators in the rigorous super-structure is:

separator of type 1: [(20-15)/5] +1=2

separator of type 2: [(20-15)/4] + 1 =2

separator of type 3: [(20-15)/6] +1=1
There are altogether 5 separators that must be linked
in every possible way to generate the rigorous super-
structure.

Example 4.

This example is taken from Floudas and
Aggarwal (1990); it is also published in Quesada and
Grossmann (1995). In this SNS problem, a three-
component feed-stream is to be separated into two
multicomponent product-streams. The pertinent data
are tabulated in Tables 7 and 8.
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Figure 4. Optimal structure of the auxiliary SNS
problem of Example 3.
Table 7. Feed and product streams for Example 4.
A B C
F 100 [ 100 | 100
Pl 30 | 50 | 30
P2 70 | 50 | 70

Table 8. Cost data for Example 4.

AB BC
Fixed charge 0.2395 | 0.7584
| Degree of difficulty | 0.00432 | 0.01517

The optimal solution of the auxiliary SNS problem
depicted in Figure § is identical to that of Example 1
given in Figure 1. For this example, S,,,=0.9979 and
Sneed=0.9979, ie., one separator of each type is
required to solve the problem. As a result, the number
of different types of separators in the rigorous super-
structure is:

separator of type 1: 1

separator of type 2: 1
There are altogether 2 separators which must be
linked in every possible way to generate the rigorous
super-structure which is identical to that of Example
1; see Figure 6.
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Figure 5. Optimal structure of the auxiliary SNS
problem of Example 4: it is also the optimal solution
of the problem.

The optimal solution of the original SNS problem
can be determined on the basis of this rigorous super-
structure; it is identical to that of the auxiliary SNS
problem given in Figure 5. The value of the objective

Figure 6. Rigorous super-structure of Example 4.

function is 1.864, which is identical to the best known
solution (Quesada and Grossmann, 1995).

CONCLUSIONS

Algorithmic methods of SNS have been
extensively investigated. Nevertheless, none of the
available methods are based on the rigorous super-
structures that yield with certainty the globally
optimal solutions of SNS problems for which the cost
function of an individual separator consists of linear
and fixed charges. In the present work, a novel
algorithmic method is proposed for the generation of
the rigorous super-structure for such SNS problems.
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