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Abstract—An innovative approach, based on both graph theory and combinatorial techniques, has been
proposed for facilitating the synthesis of a process system. In contrast to other general purpose mathemat-
ical programming methods, this innovative approach is designed to cope with the specificities of a process
system: it represents the structure of a process system by a unique bipartite graph, termed a P-graph, and
captures not only the syntactic but also the semantic contents of the process system. An axiom system
underlying the approach has been constructed to define the combinatorially feasible process structures.
This axiom system is based on a given set of specifications for the process synthesis problem. Such
specifications include the types of operating units and the raw materials, products, by-products, and a
variety of waste associated with these operating units. All feasible structures of the process system are
embedded in the maximal structure, from which individual solution-structures can be extracted subject to
various technical, environmental, economic, and societal constraints. Various theorems have been derived
from the axiom system to ensure that this approach is mathematically rigorous, thereby rendering it
possible to develop efficient process synthesis methods on the basis of a rigorous mathematical foundation.
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Examples are presented to highlight the significance and efficacy of the present approach.

INTRODUCTION

A number of methods have been developed for the
synthesis of process systems, or process synthesis in
brief. These methods can be classified according to
whether they are based purely on heuristics or
algorithms, i.e. mathematical programming methods.
Nevertheless, some methods contain both heuristics
and algorithms. Such methods can be classified as
heuristic-oriented if they depend more heavily on the
former than on the latter, and as algorithmic-oriented
if they depend more heavily on the latter than on the
former.

A recent review indicates that methods applied to
the synthesis of industrial processes are mainly
heuristic or heuristic-oriented (Westerberg, 1989).
This trend is favored by some practitioners and re-
searchers of process synthesis; however, a concomi-
tant development of mathematical programming
methods is highly desirable. It was observed as early
as 1975 that the mathematical system theory had not
flourished in process synthesis (Westerberg and
Stephanopoulos, 1975); it appears that hitherto no
mathematical tool has been available to analyze the
theoretical aspects of process synthesis, which, from
the mathematical point of view, belongs to a special
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class of network synthesis problems. Nevertheless,
since its mathematical foundation has not been estab-
lished, the recent review article on the network syn-
thesis methods (Minoux, 1989) does not cite even a
single publication from the chemical engineering liter-
ature.

Efforts to apply the mathematical programming
methods, e.g. mixed integer nonlinear programming
(MINLP) to various process synthesis problems have
produced encouraging results [e.g. Floudas et al.
(1989) and Kocis and Grossmann (1989)]. Neverthe-
less, a number of theoretical questions remain to be
resolved before an automatic synthesis of a large
industrial process can be realized.

It is often arduous to solve a large process synthesis
problem by a mathematical programming method,
e.g. MINLP, which supposedly ensures the global
optimality of the resultant solution. This can be at-
tributed to the fact that the computational difficulty
almost always increases exponentially with the size of
the problem. A possible approach for obviating
this difficulty is to simplify the model of the prob-
lem by additional mathematical methods [e.g.
Papadimitriou and Steiglitz (1982) and Nemhauser
and Wolsey (1988)]. Unfortunately, these methods do
not exploit the peculiar characteristics of the MINLP
model of the synthesis problem; thus, they are un-
necessarily complex, while the size of each solvable
problem is rather small in terms of discrete variables.
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Another possible approach for enhancing the effect-
iveness of a mathematical programming method is to
exploit the unique features of the structure of the
process to be synthesized in the earliest possible stage
of solution. This approach will be attempted in the
present work; it is analogous to the recent trend in
discrete optimization to exploit the combinatorial
structure of the problem [e.g. Tardos (1990)].

If unique features of a process structure are formu-
lated into a complete mathematical axiom system, the
search for the optimal structure can be restricted to
the set of feasible structures in process synthesis.
Furthermore, this axiom system would allow the de-
velopment of a variety of algorithms for the manip-
ulating process structures explicitly; the validity of all
these algorithms can be proved rigorously. In addi-
tion, the axiom system would render it possible to
establish the principles for structure decomposition or
simplification, to apply combinatorial enumeration,
to determine the number of feasible structures for
the process, and to generate algorithmically the
“super-structure” of the problem.

The approach proposed in the present work is
mathematically innovative; it is based on the concept
underlying a combinatorial algorithm for process syn-
thesis developed earlier (Frieldler et al., 1979; Friedler
and Pintér, 1988). This original concept is formalized
in the present work, thereby giving rise to the defini-
tion of the process graph (P-graph) to facilitate the
process synthesis. The present approach relies heavily
on both graph theory and combinatorial techniques.
It focuses on structures of the process system and
rigorously examines such structures from the math-
ematical perspective. An axiom system underlying the
proposed approach is constructed, and various
theorems are derived from it to ensure that the rigor-
ous mathematical basis for process synthesis be estab-
lished through the present approach. Though the
present approach is general, the focus is on its applica-
tion to the first steps of process design, namely, pro-
cess development, planning and basic design (Umeda,
1983).

The problem of structure representation in process
synthesis is examined at the outset. This is followed by
the definitions of the set of feasible process structures
by an axiom system. The theorems on the properties
of these feasible structures are presented; this leads to
a formal definition and properties of a maximal struc-
ture in which all feasible structures are embedded.
Individual solution-structures can be extracted from
the maximal structure subject to various technical,
economic, environmental, and societal constraints.

STRUCTURAL REPRESENTATION

The foundation of the present approach comprises
the graph of a new type for effective structural repres-
entation of a process system. This graph has been
proposed to alleviate difficulties encountered by ap-
proaches based on conventional graphs, e.g. digraph
and signal-flow graph. In the digraph representation
of a process system, the operating units correspond to
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the vertices, and the connections to the arcs of the
graph. In the signal-flow graph representation of a
process system, the vertices of the graph are associ-
ated with the materials of the process. While these
conventional graphs are suitable for representing and
analyzing a process system [e.g. Mah (1983, 1990) and
Dudczak (1986)], they are not suitable for process
synthesis as demonstrated in the following simple
examples.

Example 1
Cases (1.1) and (1.2) described below can be re-
presented by the same digraph shown in Fig. 1.

Case (1.1). Two different materials are produced
separately, one by operating unit 02 and the other by
operating unit 03. Moreover, it is necessary to feed
both of these materials to operating unit 01 to gener-
ate the final product.

Case (1.2). One material is produced by both oper-
ating units 02 and 03. This material is subsequently
fed to operating unit 01 to generate the final product.

Note that while both operating units 02 and 03 are
necessary to produce the product in the first case,
either unit is sufficient in the second case.

Example 2
Cases (2.1) and (2.2) described below are represen-
ted by the same signal-flow graph of Fig. 2.

Case (2.1). Two separate operating units, one
receiving material B as its input and the other mater-
ial C as its input, produce the same material which is
subsequently fed to another operating unit where
material A (product) is generated.

Case (2.2). A single operating unit, receiving mater-
ials B and C as its inputs, produces a material which is
subsequently fed to another operating unit where
material A (product) is generated.

Note that while the first case requires three operat-

ing units, the second case requires only two units.
Obviously, the semantics, i.e. meaning, of the figure is

01

Fig. 1. Digraph: note that it is incapable of uniquely charac-
terizing a synthesis problem as demonstrated by example 1.
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Fig. 2. Signal-flow graph: note that it is incapable of
uniquely characterizing a synthesis problem as demon-
strated by example 2.

unclear. As in Fig. 1, Fig. 2 fails to describe the process
system in clear semantics.

. Examples 1 and 2 demonstrate that neither of the
two most popular conventional graphs is semantically
rich enough to faithfully represent a process structure.
The semantics of a process structure is concerned with
the meaning of individual materials and operating
units and the relationship between them, while the
syntax of the process structure is concerned with the
ordered organization of the flow of the materials and
the operating units.

Both a digraph and a signal-flow graph can orderly
encode a process structure into a graph representa-
tion. However, as demonstrated by the examples
above, the former is not sufficient to uniquely repres-
ent individual materials and their relationship, and
the latter is not sufficient to uniquely represent indi-
vidual operating units and their relationship. Hence, a
graph more sophisticated than a conventional one,
such as the digraph or signal-flow graph, is required
to uniquely characterize a synthesis problem. For this
reason, a special graph is introduced to capture not
only the syntactic but also the semantic contents of
the process structure.

Basic terminology

Let .# be a given nonempty finite set of all mater-
ials which are to be involved in the synthesis of a
process system; it may be a set of names or a set of
vectors of characteristics of these materials. The exact
description, i.e. the contents, of set .# may vary de-
pending on the level of precision or detail desired.
While a coarse description of the materials may suffice
for approximate presentation of the system, a fine
description may be required for detailed presentation.
For example, both

My = {Xy, X3, X3, X4, X5, Xg }
and
"l{Z = {(A, ga g)’(g?Bi g)’(gr gac)’

(4, B, @), (I, B,C),(4, B, C)}
CES 47:8-L
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may represent the materials involved in a sharp sep-
aration scheme of a mixture of components A4, B, and
C. Obviously, the latter is more descriptive than the
former although both may contain identical informa-
tion.

A synthesis problem involving materials repres-
ented by set .# can be defined by triplet (2, &, 0)
where 2 is the set of products, &, the set of raw
materials, and O, the set of operating units for the
problem. The relationships among .#, #, %, and 0
can be mathematically expressed as follows:

Pc M, RM and ANP= 1)
and
O p(M)x p(MH) 2

where g (*) is a power set. Usually, if (o, f) € 0, then a
designates the set of input materials, and f the set of
output materials of operating unit (o, ). If waste is to
be treated in the process being synthesized, a de-
signates the set of materials with potential loss, and
the set of materials with potential gain with respect to
the operating unit. A material is considered to be a
“potential loss” when it may eventually contribute
negatively to the objective function of the overall
process being synthesized, e.g. profit; otherwise, it is
considered to be a “potential gain”. A typical example
of the former is a raw material, and that of the latter is
a final product. Note that waste, by definition, con-
tributes negatively to the synthesized process. It is,
therefore, a potential loss.

The definition of #, #, &, and O will be illustrated
with the sharp separation of a mixture of components
A, B, and C, i.e. mixture ABC, by distillation described
in the preceding paragraph. Suppose that the volatili-
ties of these components are ranked in the descending
order of 4, B, and C. Then, for this example, we have

My = {X1, X3, X3, X4, X5, X6 }
P, = {xy, X3, X3}
R = {x¢}
and
O, = {({xa}, {x1, X2} ({x5}, {x2, x3}), ({x6},
{x1> xs5}), ({X6}» {x35 x4 })}-

Naturally,
0, < p(M)xp(H,)

with

‘0("”1) = { g,{xl }9 {xz}, {X3}, {x4}’ {xS }’

{x6}s {x1s X2} {X1, X3}, - - -, {%y,
x27x3’x4’x5:x6}}

and

@ (M) % (M)

= {(g’ Q)7(Q’{x1})’ LELIKY 9(g9{x11x5})’
(g’{xl’xG}), ceey (g’ {xly x29 X3, x47 xs; xs})a
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({xo}s @ ({xa s fxa 1) ooy (g s {05 X5 1)
({xl}’ {xlaxG})9 ey ({xl}a

{xl’ X25 X3, X4, Xs, xG})’

({x6}, &) ({x6}s {x1}) - -
({x6}, {X1, X6 })s - - - »

({xl }’ {xl’ X2, X3, X4, Xs, x6}),

-5 ({xe}, {%1, xs})s

({xh xza X3, X4, Xs, xs}, Q),
({xla x29 X3, X4, x5a x6}’
{xa})s ooy ({x15 X2, X3, X4, X5, X6},

{x1, x5 1) ({1, X3, X3, X4, X5, Xg },

{xla xé}), CECICIEY ({xl9x2ax39 X4 x5’x6}’
{xl,x2’ x39 X4 xS’xG})}‘
Accordingly,

({x6}, {x1,xs5})

or

({(4,B,0)},{(4, &, &) (J,B,C)})

based on .#, or .#,, represents an operating unit
separating mixture ABC into component 4 and mix-
ture BC in the separation scheme, respectively (see
Fig. 3).

Process graph (P-graph)

As demonstrated, conventional graphs are incap-
able of uniquely representing process structures in
synthesis. Thus, a graph containing additional details
is required. To represent a process structure in syn-
thesis, it is possible to adopt a directed bipartite graph
(Friedler et al., 1979; Friedler and Pintér, 1988) or to
complete a digraph representation by fictitious (the
so-called interconnection) vertices (Grossmann, 1989).
The bipartite graph representation is preferred here
for the unified mathematical description of the pro-
cess structure. A graph is bipartite if its vertices can be
partitioned into two disjoint sets, and no two vertices
in the same set are adjacent. This has given rise to the

— (A, 9, ¢)

(A, B C) —

— (¢I B: C)

Fig. 3. Operating unit separating mixture ABC into com-
ponent A and mixture BC.
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(A, B,0)

(A, 9, ¢) (¢. 8,0)
Fig. 4. P-graph representation of Fig. 3.

definition of a process graph, or P-graph in short.
Figure 4 is the P-graph representation of the structure
of the operating unit separating mixture ABC into
component A and mixture BC shown in Fig. 3. In Fig.
4, a material in the process is symbolized by a circle,
designating an M-type vertex; an operating unit is
symbolized by a horizontal bar, designating an O-
type vertex. The mathematical definition of a P-graph
and that of a process structure, such as a P-graph, will
be elaborated in what follows.
Given two finite sets » and o with

2 S p(m) X @ (o) A3)

a P-graph is defined to be a pair, (», ¢), as follows:

(i) The vertices of the graph are the elements of
VYV =mVUo. 4)

Those belonging to set » are M-type vertices, and
those belonging to set » are O-type vertices.
(ii) The arcs of the graph are the elements of

o =of, LA, 5)
where
dy={(x)ly=@pecandxea} (6)
and

Ay, ={(y,x)|y = (¢, f)€ o and x € B}. )

In these expressions, x designates an M-type vertex, y
an O-type vertex, a a set of M-type vertices from
which arcs are directed into the O-type vertex, and f a
set of M-type vertices to which arcs are directed out of
the O-type vertex. In other words, each arc in &/, is
from an M-type vertex to an O-type vertex, and that
in &, from an O-type vertex to an M-type vertex.
Note that the arcs are only implicitly defined for the
P-graph. This is in sharp contrast to the conventional
way of defining a graph where both the vertices and
arcs are explicitly given. The advantage of this non-
conventional definition will be elaborated later.

In summary, two types of vertices, M- and O-types,
exist for P-graph (s, ¢); an arc which is directed spans
two vertices of different types only. The union and
intersection of the two P-graphs, (#,,¢,) and
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(2, 0,), are defined, respectively, as

(my, 01) U (2, 03) = (g U mz, 00V 23)  (8)
and

(my, 01) N (3, ¢2) = (my N mz, 000 03)  (9)

both of which remain as P-graphs, since
21V 05 S (9 (my) % p(9my)) U (9 (m3) X 9 (om5))
S P (my U my) X o (my U my) (10)
and
o1 N 23 S (P (on1) X (21)) O (9 (m2) X (92))
= p(my "N my) X o (my O my). (11)
Furthermore, (s,, 2,) is a subgraph of (s,, 2,), i.e.
(my, 21) € (m2, 23)
if

my S my and ¢, S o,.

The structure of a process can be defined as a P-
graph. For synthesis problem (2, ®, 0), let » be a
subset of material set .#, and o be a subset of operat-
ing unit set @. Furthermore, let us suppose that sets »:
and o satisfy formula (3). Then, the structure of the
system with set » of materials and set o of operating
units is formally defined as P-graph (s, o). This defini-
tion leads to the following properties.

(i) Materials and operating units are represented
by vertices of the M- and O-types, respectively.

(i) Two vertices, one of the M-type and the other
of the O-type, are linked by an arc if and only if
the corresponding linkage is realized in the
process represented by the graph.

(ili) An arc originates from the node representing a
material with a potential loss towards that
representing an operating unit, or from the
node representing an operating unit towards
that representing a material with a potential
gain. This property indicates that the directions
of arcs are usually identical to the directions of
material flows in a process.

A P-graph can capture not only the syntactic but
also the semantic contents of a process system. For
the two examples presented at the outset of this paper,
three different P-graphs can be constructed to
uniquely represent the four cases. Note that cases (1.2)
and (2.1), which are identical, are uniquely represented
by the P-graph in Fig. 5, case (2.2) in Fig. 6, and case
(1.1) in Fig. 7. Another example, a structure of sharp
separation of mixture ABC into its three components,
A, B, and C, can be represented by the P-graphs given
in Fig. 8.

Note that in practice, no arbitrary P-graph can
represent the structure of a process. Any P-graph
must satisfy a set of combinatorial properties of the
process, comprising the materials and operating units,
to appropriately represent a feasible process structure.
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A

Fig. 5. P-graph uniquely representing cases (1.2) and (2.1).
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®
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A

Fig. 6. P-graph uniquely representing case (2.2).

01

A

Fig. 7. P-graph uniquely representing case (1.1).

These properties give rise to a set of axioms which are
discussed in what follows.

SOLUTION-STRUCTURES

The materials and operating units in a feasible
process structure must always conform to certain
combinatorial properties. For example, a structure
containing no linkage between a raw material and a
final product is unlikely to represent any practical
process. Hence, it is of vital importance to identify the
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ABC

BC

B C

Fig. 8. P-graph representation of a process structure
involving sharp separation of mixture ABC into its three
components.

general combinatorial properties to which a process
structure must conform. More importantly, the prop-
erties identified should be satisfied by the structure of
any feasible solution of the synthesis problem. Con-
versely, any P-graph that satisfies these properties can
usually be the structure of a feasible solution. In other
words, those and only those structures satisfying these
properties can be feasible structures of a process: no
other structures or constraints need be considered in
synthesizing the process.

Axioms

The following set of axioms has been constructed to
express the necessary and sufficient combinatorial
properties to which a feasible process structure should
conform:

(S1) Every final product is represented in the
graph.

(S2) A vertex of the M-type has no input if and only
if it represents a raw material.

(S3) Every vertex of the O-type represents an oper-
ating unit defined in the synthesis problem.

(S4) Every vertex of the O-type has at least one
path leading to a vertex of the M-type re-
presenting a final product.

(S5) If a vertex of the M-type belongs to the graph,
it must be an input to or output from at least
one vertex of the O-type in the graph.

If a P-graph of a given synthesis problem, (2, %, 0),
satisfies these axioms, it is defined to be a solution-
structure of the problem. In other words, for synthesis
problem (2, &, 0), axiom (S1) demands that all the
final products, &, be generated by the process re-
presented by a solution-structure; axiom (S2) explic-
ates the meaning of raw materials, &, which, by defini-
tion, should not be generated by the process under
consideration; according to axiom (S3), only those
operating units, O, that are defined in the problem can
appear in a solution-structure; axiom (S4) disallows
the existence of an operating unit which is not con-
tributing to product generation; and, according to
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axiom (S5), only those materials that belong to at least
one operating unit of the structure can exist in the
structure. The formal mathematical definitions of
these axioms are given in Appendix A.

If a vertex of the O-type belongs to a P-graph
representing a solution-structure, all materials input
to and output from it also belong to the graph
according to formula (3), since a solution-structure is
required to be a P-graph. Figure 9 depicts an example
of two solution-structures for synthesis problem
(%5, R, 03) with

My;={A,B,C,D,E F,GH,I}
P, = {4}
= (D, F,H)
and
05 ={({C}.{4,1}),({B}. {4, E}), {D, E}, {B}),
({E, F}, {B}), ({F, G}, {C}), ({H, I}, {G})}.

Note that a solution-structure does not necessarily
contain all the components defined in the set of mater-
ials, e.g. .#4; neither does it necessarily utilize all the
components specified in the set of raw materials, e.g.
Rs.

Since the final product, A, is present as an M-type
vertex in both Fig. 9(a) and (b), axiom (S1) is satisfied
by the solution-structures depicted in these figures.
Axiom (S2) is satisfied in that vertex F in Fig. 9(a) and
vertices F and H in Fig. 9(b) are the only vertices
without an input; they represent raw materials. Figure
9(a) contains two operating units, ({E, F}, {B}) and
({B}, {A, E}), and Fig. 9(b) contains three operating
units, ({H, I}, {G}), ({F, G}, {C}), and ({C}, {4, 1});
all these operating units are defined in the synthesis
problem, thereby satisfying axiom (S3). In conformity
with axiom (S4), every vertex of the O-type in either

A

(a) (b)

Fig. 9. Two solution-structures for synthesis problem

(&5, &5, G3).
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H I

C

Fig. 10. P-graph that is not a solution-structure for synthesis
problem (%5, &;, 0;).

Fig. 9(a) or (b) does have at least one path leading to
vertex A representing the final product. For example,
the path in Fig. 9(a), comprising three arcs, namely,
(({E, F}, {B}), B), (B, ({B}, {4,E})), and (({B},
{A, E}), A), links vertex ({E, F}, {B}), representing an
operating unit, to vertex 4 which is the final product.
Axiom (S5) is satisfied by virtue of the fact that every
vertex of the M-type belonging to the graph of either
Fig. 9(a) or (b) is an input to or output from at least
one vertex of the O-type in the respective graph. Thus,
all axioms are satisfied by the structures in Fig. 9(a)
and (b). As a counterexample, Fig. 10 illustrates a P-
graph that is not a solution-structure of synthesis
problem (%, %, 0,), because axioms (S1), (S2), (S4),
and (S5) are not satisfied.

Theorems

Let S(2, @&, 0) be the set of all solution-structures
for process synthesis problem (£, #, 0). The follow-
ing theorems are derived on S. The proofs of these
theorems are given in Appendix B.

Theorem 1 (closure under union on solution-struc-
tures): The union of two solution-structures remains a
solution-structure, that is, if

0,€S(?,R,0) and g,€S(2, R, 0)
then
(6,v0,)eS(2,R0).

In general, however, (6, N 6,) will not be an element of
S(2, %, 0).

Theorem 2 (composition/decomposition of solution-
structures): Solution-structures generating different
products can be composed to yield a solution-structure
generating all the products, that is, if

0,€S(#,#,0) and o0,€S(%,,R,0)
then
(6,v0)eES(PUP, R O0)

Conversely, a solution-structure generating a large set

1979

of products can be decomposed to yield solution-struc-
tures generating subsets of products. In other words, if

geES(PA U, R 0)
then there exist ¢, and o, such that

0,€S(#,R,0),0,€S(%,,R,0),and 0 = (0, U 7,).

Theorem 3 (extraction of a solution-structure based on
common products): A solution-structure generating a
specific set of products can be extracted from the union
of the solution-structures generating this set of products
as common products. In other words, if

0,€S(P,, R, 0), 6, € S(P,, R, 0),
and ZnP+#+ J

then there exists
g, € S(#, N F, R, 0}
such that
03 € (0, L 0,)

Theorem 4 (extensibility of solution-structures): A
solution-structure generating a smaller set of products
can be extended so that it is contained in a solution-
structure generating a larger set of products provided
that the smaller set is a subset of the larger set. In other
words, if

P cP,0,€5(P,R0), and S(#, R, 0)# &
then there exists
,€S5(%,, R, 0)
such that
g, S0,

Theorem 5 (contractibility of solution-structures): A
solution-structure generating a larger set of products
can be contracted to yield a solution-structure gener-
ating a smaller nonempty set of products provided that

the smaller set is a subset of the larger set. In other
words, if

B +PcP

then there exists

and o0,€S(%,, X, 0)

6,€5(2,R,0)
such that
g, S 0,.
Theorem 6 (operating-unit-set expansibility of solu-
tion-structures): A solution-structure of a synthesis
problem involving a smaller set of operating units is also
a solution-structure of a synthesis problem involving a

larger set of operating units provided that the smaller
set is a subset of the larger set. In other words, if

0,0, and 6eS(?, X, 0,)
then
geS(2, R, 0,)
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i.e.

S(2, R, 0,) < S(2, R, 6,).

Examples

The theorems derived are elaborated further
through synthesis problem (%, %, @) defined pre-
viously, and synthesis problem (%, 4,, 0,) specified
by

M,={A,B,C,D,E,F,G,H,1,J,K,
L,M,N,0,P,R,S}
2, ={A, B,C}
A, ={G,N, O, P,R}
and
@ = {({D}, {4} ({E}, {Bh), ({1}, {C}) ({F},{D,K}),
({F, G}, {E,K}),({H}, {E, S}), ({K},
{F}), (K, L}, {F}),{L, M}, {H, I}),
({M, N}, {1}), ({0}, {K}), ({P, R, §},
(L, M}), ({J, K}, {F})}.

Theorem 1 asserts that the set of solution-structures
is closed under union. For example, the P-graph in
Fig. 11 is the union of the two P-graphs, ie. two
solution-structures, of synthesis problem (%, %, @)
in Fig. 9. Clearly, it is also a solution-structure for the
problem. In contrast, it should be obvious that the
intersection of two solution-structures usually does
not yield a solution-structure.

Theorem 2 states that for synthesis problems with
common sets of raw materials and operating units, a
solution-structure representing a process generating
product set ( = &, U £,) can be composed through
the union of two solution-structures, one representing

N

A

Fig. 11. Solution-structure for synthesis problem (%5, %4,
@), which has been generated through the union of the two
solution-structures of Fig. 9.
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the process generating product set 2, and the other
product set #,. Conversely, the solution-structure
representing the process generating product set 2 can
be decomposed into two solution-structures, one re-
presenting the process generating product set £,
and the other product set %,. For synthesis problem
(%4, A4, 0,), Fig. 12 contains a solution-structure
which is the union of two solution-structures. The
graph, consisting of region I and the shaded region,
is a solution-structure for synthesis problem
(24, 4, 0,), and the graph, consisting of region II
and the shaded region, is a solution-structure for
synthesis problem (24, 4,, ,). Note that

#,={A,B}
2, ={B,C}
and
P,uP,={A,B,C}=2,

Similarly, theorem 3 states that for two synthesis
problems with common sets of raw materials and
operating units, a third solution-structure can be ex-
tracted from the union of two solution-structures, ¢,
and o,, provided that they represent, respectively, two
processes generating product sets %, and %, which
intersect. This third solution-structure represents a
process generating product set 2( = %, n %,). In Fig.
12, the graph in the shaded area is a solution-structure
for synthesis problem (2}, 4,, (,) where

27 = {B).

Fig. 12. Composition and decomposition of the solution-
structures of synthesis problem (%, 4,, 0,).

L
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This is a subgraph of the union of the graphs repres-
enting solution-structures for problems (#4, %4, )
and (24, 4,, 0,). Clearly,

L= (B} = 2.

Theorem 4 explicates that a solution-structure of a
smaller synthesis problem, (#,, #, 0), can readily be
extended so that it is contained in a solution-structure
of a larger synthesis problem, S(%,, %, 0), where
P, = #,. Conversely, a solution-structure of the
larger problem can be contracted to yield a solution-
structure for the smaller problem according to
theorem 5. As an example for extensibility of solution-
structures, the graph in the shaded region of Fig. 12
is a solution-structure for synthesis problem
(24, A,, 0,). It can be extended to incorporate region
I, thereby generating a solution-structure for synthesis
problem (2, 4,, (), where

Py(={B}) « Z,(= {4, B}).

Theorem 6 claims that for synthesis problems with
common sets of products and raw materials, a solu-
tion-structure of the synthesis problem with the
smaller set of operating units is also a solution-struc-
ture of that with the larger set of operating units. For
example, Fig. 12 in its entirety is a solution-structure,
which is an element of

since operating unit ({K }, {F }) does not appear in the
structure. Naturally, the solution-structure of Fig. 12
is also an element of S(%,, %4,, 0).

’
a N

MAXIMAL STRUCTURES
Since the set of solution-structures for process syn-
thesis problem (2, &, 0) is finite and closed under the
union operation according to theorem 1, it contains
an element, u(2, #, 0), which is the union of all its
elements, i.e.

U2, R, 0) = (12)

U o
ceS(2,R,0)
provided that S(2, ®, 0) # &. Then, u(2, X, 0) is
termed the maximal structure of synthesis problem
(2, #, 0). In this graph, each arc and vertex belongs
to at least one solution-structure, and each solution-
structure is a subgraph. A structure corresponding to
the maximal structure is often referred to as a “super-
structure” in the literature of process synthesis [e.g.
Floudas (1987)]. It appears that eq. (12) represents

1981

A

Fig. 13. Maximal structure of synthesis problem (%, %, @;).

Fig. 14. Maximal structure of synthesis problem (%, %, 0,).

C6 (Rodrigo and Seader, 1975; Nath and Motard,
1981) is given in Fig. 15, and the maximal structure of
the synthesis problem of Grossmann (1985) is given in
Fig. 16.

F, %, U),  the DirSt Tormal défnition of a super-siruCture wiicn'
nits, for hitherto has been unavailable. The term “maximal
structure” is adopted for two reasons. First, it is more

(13) expressive semantically than the super-structure. Sec-
ond, the term super-structure has a different connota-

tion in computer science [e.g. Cantone et al. (1989)].

(14) The maximal structure for the previously defined
synthesis problem, (%, %;,0;), is depicted in

ted with Fig. 13, and that for synthesis problem (%,, %,, 0,) in
given in Fig. 14. The maximal structure of separation problem

© I pair (#, v) répresentis ine r-grapn o f(s

then @ must represent a set of operating u
which

0c0O
and
S(2,%,0)=S(2,%,0)

and # represents the set of materials associa
0. Stated differently, not all operating units
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Fig. 15. Maximal structure of separation problem C6 (Rodrigo and Seader, 1975; Nath and Motard, 1981).

the specifications of synthesis problem (2, #, 0) need
appear in the maximal structure of the problem. The
maximal structure contains a minimal subset of @, @,
for which

K2, R,0)= w2, X, 0). (15)

For example, in synthesis problem (%,, 4,, 0,), for a
subset of @), 0,, where

Q4= O0\{({J,K},{F})} 0
we find that

H(Fs, Ry, O) = W( Py, R, 04)
and

S(Ps, Ry, O) = S(Z4, Hy, Os)-

It should be noted that an arbitrary subset of @ does
not necessarily satisfy eq. (15).

Theorems

Let u(2, #, 0) be the maximal structure for process
synthesis problem (2, #, 0). The following theorems
are derived on y; see Appendix B for proofs.

Theorem 7 (maximal structure as a solution-structure):
The maximal structure is one of the solution-structures,
that is,

WP, R,0)eS(2, R, 0).

Theorem 8 (composition of maximal structures):
Maximal structures generating different products can
be composed to yield a maximal structure generating all
the products, that is,

”(‘ql v ng g90) = ”(gl’ Qv 0) v ”(‘92, Q, @)'

Theorem 9 (extraction of a maximal structure): 4
maximal structure generating a smaller set of products
can be extracted from a maximal structure generating a
larger set of products provided that the smaller set is a
subset of the larger set. In other words, if

then
”(919-Q, @) < #('?21 99 0)
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ABC

Splitter

ABC

Compressor

Compressor -

Reactor C1 Reactor C2

Separator

Separator Separator

Fig. 16. Maximal structure of the synthesis problem of
Grossmann (1985).

Theorem 10 (constructive theorem on the extraction of
a maximal structure): If

P <P
S(2,,R,0)# &
WPy, R, O) = (3, 2,)
21 ={Yolyo € 2, and 3 path [y,, y,]in
(#25, 2,) such that y, € 2, }

1983

and

7y =(a,kfép,(aUB)

then
(mb 01) = ”('?1, g’ 0)'

Theorem 11 (contractibility of maximal structures): A
maximal structure generating a specific set of products
can be extracted from the intersection of two maximal
structures, each generating a complementary part of the
products contained in the set, that is,

WP, APy, R, 0) < u(P,, R, 0) A W(P, R, 0).

Examples

By theorem 7, a maximal structure is a solution-
structure; however, usually it may not necessarily be
the optimal one. For example, the maximal structure
of Fig. 13 satisfies all the axioms of solution-struc-
ture for synthesis problem (%5, %, 0,); therefore, it is
a solution-structure for the problem. Similarly, the
maximal structure of Fig. 14 satisfies all the axioms of
solution-structure for synthesis problem (%, 4,, 0,);
it is a solution-structure for the problem.

According to theorem 8, the maximal structures of
two synthesis problems, (#,, &, 0) and (%, &, 0), can
be combined to yield the maximal structure for the
larger synthesis problem, (#, U %, &, 0). For ex-
ample, the union of the maximal structure of synthesis
problem ({4, B}, 4,, G,), depicted in Fig. 17, and that
of problem ({C}, 4, (), depicted in Fig. 18, yield the
structure given in Fig. 14, which is the maximal struc-

0 S R P
[ ]
-1 12
m’KQ : .
y
—+7 8 9
1

A B

Fig. 17. Maximal structure of synthesis problem ({4, B},
Ry, 0,) (I: by-product).
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E

Fig. 18. Maximal structure of synthesis problem ({C},
R,, 0,) (E: by-product).

ture for problem (%, 4,, ¢,). Note that
?,={4,B,C}={A4,B}u{C}.

Also note that material I in Fig. 17 and material E in
Fig. 18 are not defined as products in synthesis prob-
lem (#,, 4,, 0,). They are by-products generated by
the synthesized processes. A by-product is a second-
ary product obtained in addition to the primary pro-
ducts to be generated by the process being synthesized
or designed.

Theorem 9 states that the maximal structure of a
smaller synthesis problem, (#,, &, ©), can be abridged
from the maximal structure of a larger problem,
(#,, &, 0), where

P < P,

For example, the maximal structure of synthesis prob-
lem ({4, B}, #,,0,) in Fig. 17 is contained in the
maximal structure of synthesis problem (%, %, ¢,)
in Fig. 14 with

{A4,B} c 2,

Theorem 10 essentially elaborates the mathematical
basis for constructing an algorithm to determine
u(%,, &, 0) in theorem 9.

Theorem 11 asserts that a subgraph of the common
portion of the maximal structures of two synthesis
problems, (#,, ®, 0) and (%,, %, 0), can be extracted
to yield a structure which is contained in the maximal
structure for the smaller synthesis problem,
(2, NP, R, 0). For example, the intersection of the
maximal structure of synthesis problem ({4, B},
A, 0,), depicted in Fig. 17, and that of problem
({B, C}, &, 0,), depicted in Fig. 19, yields the struc-
ture given in Fig. 20, which is the maximal structure
for problem ({B}, #,, @,). Clearly,

M{B}’%) 04) 1= ﬂ({A’ B}’ g" 04) 3] l‘({B’ C}: ad-: 04)-

F. FRIEDLER et al.

Fig.19. Maximal structure of synthesis problem ({B, C},
A,, ;) (D: by-product).

Fig. 20. Maximal structure of synthesis problem ({B},
Ay, 0,) (D, I by-products).

Note that material D in Fig. 19 and materials D and I
in Fig. 20 are by-products.

CONCLUDING REMARKS

An innovative graph-theoretic approach to process
synthesis has been introduced. The heart of the ap-
proach is a special directed bipartite graph known as
a process graph, or P-graph in brief. An axiom system
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has been developed to render effective process syn-
thesis possible through manipulation of feasible pro-
cess structures represented as P-graphs. Such manip-
ulation is governed by a set of theorems derived from
this axiom system; the validity of each of these theor-
ems has been proved by exploiting the unique features
and fundamental properties of process structures in
synthesis. The theorems form the basis for developing
additional theorems and for deriving effective al-
gorithms whose validity can also be assured. In prin-
ciple, the present approach is applicable to the syn-
thesis of any process systems with minimum genera-
tion of waste; it is also applicable to the synthesis of
systems to be constructed in stages.
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NOTATION
o set of arcs of a P-graph
d- indegree of a vertex
iff, <> if and only if
(o2, 0) P-graph
m, M set of materials
0,0 set of operating units

2 set of products

(2,2, 0) synthesis problem defined by the specific
sets of products (£), raw materials (),
and operating units ()

R set of raw materials

S(2, R, 0) set of solution-structures for synthesis
problem (2, &, 0)

v set of vertices of a P-graph

Ly y;] path in a P-graph

Greek letters

u(2, X, 0) maximal structure for synthesis problem
(2, R,0)

o solution-structure

Mathematical symbols
(%) empty set

) power set

v for any

3 there exists
= imply

O end of proof
X Cartesian product
{ } set

i cardinality of a set

\ set difference

(c) s (proper) subset or subgraph
(2)=2 (proper) superset or supergraph
€ element

1985

¢ not an element

N intersection of sets or graphs

v union of sets or graphs

UI x union of all the elements of sets x; (i€ )
1€.
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APPENDIX A: FORMAL DEFINITIONS
Let # be a finite nonempty set.

Synthesis problem
A synthesis problem is defined by triplet (2, &, 0), where

P(c M)
is a set of final products,
R MPNR= )
is a set of raw materials, and
0 < (p(H)x p(H))

is a set of operating units.
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Process graph (P-graph)
Let » be a finite set and
o S @(m) x p(m).

A P-graph is defined by pair (», o) where vertices of the
graph are the elements of

m\ o
and arcs of the graph are the elements of
A=A,

with

o ={(x,y)ly = (% f)e o and x € a}
and

s, = {(y, ¥)|y = (# B) € o and x € B}.
Moreover, [y, y,] is a path in P-graph (s, o) if

V-1, V)€ A, i=123...,n

The union and intersection of two P-graphs, (»,, 2, ) and
(o5, 0,), are defined, respectively, by

(21, 01) U (a3, 03) = (9921 U m3, 01 U 03)
and
(21, 21) N\ (my, 03) = () O mg, 04 N 23).
Graph (s,, 0,) is a subgraph of graph (s,, 0,), ie.

(my, 01) E (3, 0,)

(my € my) and (o, S 0,).

Let (s, o) be a P-graph. The indegree of a vertex, x(€ ), is
defined by

a~(x) =141
where

o' ={( B)(x B) € o and y € B}.

Structure of a system
Let m S M,2 S O and o S () X p(sm). The structure
of this system is defined by P-graph (s, o).

Solution-structure
P-graph (s, o) is a solution-structure of synthesis problem
(2, R, 0) if it satisfies the following axioms:

S Pcm

(S2) Vyem,d (x)=0
S ocoO

(S4) Vy,€ 0, 3path [y,, y,], where y e
(S5) Vy € m, 3 (a, B) € o such that y e (x U B).

iff yed

The set of solution-structures of synthesis problem (2, &, 0)
will be denoted by S(#, &, 0).

Maximal structure

The P-graph, u(2, &, 0), is defined to be the maximal
structure of synthesis problem (2, &, ©) by the following
equation.

wW2,a,0)=
0eS(2,2,0)

APPENDIX B: PROOF OF THEOREMS
The proofs resort to the following four propositions.

Proposition 1: Let P-graph (s, o) be given. Then,
VxEm, a(u,ﬂ)eo

F. FRIEDLER et al.

such that
xe@vp)
if and only if
me | @up. (B1)
(B)eo

Hence, axiom (S5) can be replaced by the expression above.

Lemma: Let (s, o) be a P-graph and let expression (B1) hold.
Then

" =

U @ubp.
(xp)eo

Proof: Since (s, o) is a P-gtaph,
2 S p(m) X fo(m)

and
m= @up=2 |J @up). (B2
(o, B) € (o) X o(mm) @pf)eo
Expressions (B1) and (B2) lead to the lemma. [m}

Corollary: If P-graph (s, o) satisfies axiom (S5), then it can be
defined by the set o.

Propositon 2: Let
o= (m, o) € S(?, R, @)
PP

o' ={yoly¥o € oand 3 path [y,, y,] in o such that y, e #'}

w= U @up)
@peo
and
o = (', o).
Then
Vxem',d; (1) =0<>dz(x) = 0.
Proof: Let
m'= |) a2{xlxe » andd (x) =0}
(a,B)eo’
X E m"
and
0" = {(® (% B) € » and x € B}.
Then
and
0” g 0'
and thus,
d;(x)=12"| = dg (). o
Propositon 3: Let
6 =(m, 0)eS(P,R,0)
P cP

o' = {yolyo € 2 and 3 path [y,, y,] in o such that y, e 2’}

m= ) (@up)
(wp)eo’
and
o' = (wt, o).



