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Abstract—The maximal structure, which can be expressed as a process graph (P-graph), is the union of
all combinatorially feasible process structures of a synthesis problem. This is analogous to the
conventionally used term “superstructure” which has not yet been defined mathematically, and thus,
cannot be analyzed mathematically. Since a mathematical programming method of process synthesis
requires a mathematical model, as its input, based on the super or maximal structure, generating this
structure is a problem of fundamental importance. Algorithm MSG, presented here, appears to be the
first published algorithm for generation of the maximal structure. This algorithm is efficient because its
complexity is polynomial. It is, therefore, advantageous for solving large industrial process synthesis
problems. The mathematical basis of maximal structure, the proof of all statements and validation of
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algorithm MSG are also presented.

1. INTRODUCTION

A mathematical programming method of process
synthesis should involve two major steps, the gener-
ation of the mathematical model and the solution of
this model. The first step is the real “synthesis” part
while the second step is the “analysis” part of process
synthesis. The majority of the available methods of
process synthesis based on mathematical program-
ming deals only with the second step, analysis. This
step demands a mathematical model as its input.
Since such a model is usually derived from the
so-called superstructure, it plays an essential role in
process synthesis (Umeda et al., 1972; Ichikawa and
Fan, 1973; Grossmann, 1985, 1990; Floudas, 1988).
In spite of its importance, in-depth studies of the
fundamental mathematical properties of the super-
structure have not been undertaken; moreover, the
superstructure hitherto has never been rigorously
defined mathematically. Mathematical studies of
the superstructure are inconsequential for relatively
simple process synthesis problems, such as those
solved so far by mathematical programming
methods. For a complex industrial process synthesis
problem, however, it is highly desirable to know: (i)
whether useless processing or operating units are
included in the model of the problem, i.e. whether the
model is more complex than required; and (ii) if there
is any operating unit missing from the model, which
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should be an element of a solution, thereby prevent-
ing the optimality to be attained. It is necessary,
therefore, that structures of the process be theoreti-
cally analyzed and studied from the combinatorial
point of view in process synthesis.

For illustration, let us consider an industrial-scale
process synthesis problem where the products and
available raw materials are specified and where
sev29,7
eral dozen operating units have been identified as the
possible elements of the optimal process. The MINLP
(mixed integer-nonlinear programming) model of this
problem has the same number of binary variables as
the operating units. The solution of this model is
extremely tedious even if it can be executed by an
available technique. Thus, it is worthwhile to examine
the following questions prior to solving the
problem:

(i) Is there any combination of the available
operating units that can produce the product
from the raw materials? i.e. is there any com-
binatorially feasible solution to the problem?

(ii) Isit necessary to include all the operating units
in the model of synthesis?

(iii) Can the number of binary variables of the
model be minimized by an efficient combina-
torial technique to reduce the model’s com-
plexity? Note that the difficulty of solving a
model usually increases exponentially with the
number of binary variables.
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The technique introduced in this paper provides an
efficient algorithm to answer the above questions,
thereby giving rise to enormous savings in the compu-
tational effort required by a mathematical program-
ming method for solving the model of the problem.
This technique, however, requires rigorous, theoreti-
cal analysis of process synthesis.

The maximal structure, to be defined later, denotes
the union of all combinatorially feasible structures of
a process synthesis problem. The term, maximal
structure, appears to be more appropriate than super-
structure in process synthesis; the former is more
expressive semantically than the latter. It is worth
noting that the superstructure has a different conno-
tation in computer science (Cantone et al., 1989). The
maximal structure is the largest structure that must be
taken into account in process synthesis; it is also the
simplest one that contains all combinatorially feasible
process structures. An algorithmic construction of
the maximal structure has been hitherto impossible.
The present work is intended to remedy this situation;
the development of the algorithm for the maximal
structure generation can be regarded as part of the
effort towards automatic process synthesis. The
mixed integer programming model of a process syn-
thesis problem can be composed algorithmically from
the models of individual operating units by the
maximal structure generation algorithm presented
here. Moreover, if this process synthesis problem
does not have a feasible process structure, the present
algorithm will indicate that no mathematical pro-
gramming examination will be necessary.

The majority of the available mathematical pro-
gramming methods for process synthesis requires a
feasible initial structure. This structure can be gener-
ated algorithmically when the maximal structure of
the problem is known. Furthermore, in theory, all
structures satisfying the objective of the synthesis
problem can be generated combinatorially.

The focus of this paper is on the total flowsheet
synthesis (see, e.g. Siirola and Rudd, 1971; Lu and
Motard, 1985; Douglas, 1988); nevertheless, the re-
sults can be extended to other classes of synthesis
problems. The algorithm presented is general and has
been proven to yield the maximal structure for a
synthesis problem without fail, if it exists. Since the
algorithm is polynomial in complexity, it is an
efficient combinatorial algorithm and thus, is appli-
cable to the solution of large industrial-scale synthesis
problems.

2. BASIC TERMINOLOGY AND SUPPORTING THEOREMS

Prior to applying routinely the algorithm for gener-
ating a graph representing the maximal structure for
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a synthesis problem, it is essential to evaluate the
complexity of the algorithm and to prove its validity.
This should be performed based on rigorous math-
ematical definitions of the problem and on the basic
theorems related to the definitions. An axiom system
for this purpose has been presented elsewhere
(Friedler et al., 1992).

2.1. Synthesis problem

Let M be a given finite set of all material species,
or materials in short, which are to be involved in the
synthesis of a process system; it may be a set of names
or vectors of characteristics of these materials. The
exact description, i.e. the contents, of set M may vary
depending on the level of precision or details desired.
A simple example for set M can be found in the
synthesis of a system for separating the four-com-
ponent mixture, ABCD, into the pure products, A, B,
C and D, only by sharp separators. For this example,
M = {4, B, C, D, AB, BC, CD, ABC, BCD, ABCD}.
Instead of the name or characteristics, a simple
labeling of the materials is also acceptable. Note that
such a labeling exists for any process synthesis prob-
lem that can be solved by available mixed-integer
mathematical programming methods.

A synthesis problem involving materials rep-
resented by set M can be defined by triplet (P, R, O)
where P is the set of products (P #0); R, the set of
raw materials (R #0); and O, the set of operating
units (O # 0). The relationships among M, P, R and
O can be mathematically expressed as follows:

PcM,RcSM, MnO =0 )]
and
O cP(M) x PM), )

where 2 is a power set, the set of all subsets of a set,
and x is the Cartesian product, signifying the for-
mation of the set of pairs of the elements of two sets.
In other words, O is the set of pairs of two subsets
of M. If (a, B) is an element of O, then, « designates
the set of input materials into operating unit (a, f)
and B is the set of output materials from operating
unit («, #). Each element of « represents one material
as one input stream to the operating unit, which is
independent of streams represented by the other
elements of a. Similarly, each element of § represents
one material as one independent output stream.
eeSets « and f may have common elements; this case
represents a simple recycling around the operating
unit.

For example, if M has three elements, X, Y and Z,
ie. M ={X, Y, Z}, then, 2(M) = {0, {X}, {Y}, {Z},
{x, Y}, {X, Z}, {Y, Z}, {X, Y, Z}}. Naturally, if
0 ={{x, 1}, {Z}), (X, Z}, {Y, Z})}, then, O
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(a) Operating unit (b) Operating unit
(X, Y}, {Z)). X, Z}, (Y, Z}.

Fig. 1. Operating units.

satisfies constraint (2). The first element of set O,
operating unit ({X, Y}, {Z}), has two input materials
X and Y and one output material Z (see Fig. 1a). The
second element of set O, operating unit ({X, Z},
{Y, Z}), has two input materials X and Z and two
output materials Y and Z. Since the input and output
share common element Z, this operating unit forms
a simple recycling (see Fig. 1b).

It is also assumed that for a synthesis problem a
product cannot be a raw material, i.e.

PNR=¢. A3)

This constraint can be satisfied by any synthesis
problem even if a material can be produced and
purchased (e.g. extracting solvent). In this case, con-
straint (3) is satisfied by identifying or visualizing a
feeder between the material which is an input to the
entire system and the recycled material so that these
two materials can be differentiated; this signifies that
the former is indeed a raw material.

2.2. Process graph and process structure

Conventional graphs are suitable for analyzing a
process structure (Mah, 1990). Friedler et al. (1992),
however, have demonstrated that such graphs are
incapable of uniquely representing process structures
in synthesis. Thus, a special directed bipartite graph,
a process graph or P-graph in short, has been intro-
duced to circumvent this difficulty. It is bipartite
since its vertices are partitioned into two sets, and
no two vertices of the same set are adjacent in the
graph.

The mathematical definition of a P-graph and that
of a process structure as a P-graph will be elaborated
in what follows.

Given two finite sets m and o with:

0= P(m) x P(m), )

a P-graph is defined to be pair (m, o). The vertices of
the graph are the elements of:

V=muo, 5)

where the vertices belonging to set m are the vertices
of the M-type, and those belonging to set o are the
vertices of the O-type. The arcs of the graph are the
elements of:

A = A,UA,, 6)

Ay={(x,yly=@p)eoand xea}  (7)

A, ={(y, x)ly=(,B)eoand xef}. (8)
An arc is given in A4, or A, as the pair of vertices of
the initial and terminal points. According to ex-
pression (7), (x, y) is an arc of the graph if y is an
element of o in the form of the pairs of « and B, («, 8),
so that x is an element of a. Vertex x is the initial
point and vertex y is the terminal point of this arc. In
expressions (7) and (8), x designates a vertex of the
M -type; y, a vertex of the O-type; and « and S, sets
of the vertices of the M-type. Each arc in 4, is from
a vertex of the M -type to a vertex of the O-type, and
that in 4, is from a vertex of the O-type to a vertex
of the M-type. Note that the arcs are only implicitly
defined for a P-graph. This is in sharp contrast to the
conventional definition of a graph where both the
vertices and arcs are explicitly given.

For illustration, let m ={A, B, C, D, E, F} and
o={({B, C}, {4, F}), (D}, {C}), {E, F}, {C}}.
Since the elements of o are the pairs of some subsets
of m, o satisfies constraint (4), i.e. (m, o) is a P-graph.
The vertices of this graph are in set V, V = {4, B, C,
D, E, F,({B, C}, {4, F}), (D}, {C}), {E, F}, {C})},
where A, B, C, D, E, F are the vertices of the M-type,
and the remaining three vertices are those of the
O-type. One of the arcs of this graph is from vertex
B to vertex ({B, C}, {4, F}) according to expression
(7), i.e. arc (B, ({B, C}, {4, F})). This graph is given
in Fig. 2.

The union and intersection of the two P-graphs,
(m,, 0,) and (m,, 0,), are defined, respectively, as:

(my, 0,)u(my, 0,) = (mumy, 0,00,) )
and
(my, 0,)N(my, 0,) = (m;Nm,, 0,Mn0,). (10)
D E F
2
B
A

Fig. 2. Simple example of a P-graph.
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Table 1. Operating units of Example 1

Outputs

No. Type Inputs

- R, R, R,
Ry, Ry, R, R,
Ry Ry, F
Ry, Ry, F

Eupme

wl
D >
&

UMNEZZNOSNXAMNON

Furthermore, (m,, 0,) is a subgraph of (m,, 0,), i.e.
(my, 0,)=(m,, 0,), if mySm, and 0,<o0,.

If there exist x;, X5, X3, ..., X,_;, X, such that
(x15 X3), (X35 X3), - - 5 (X,_1, X,,) denote arcs of P-graph
(m, 0), then [x,, x,] is defined to be a path from vertex
x, to vertex x,. Paths [x,, x] and [x,, x,] determine a
path from x, to x,,; this path is denoted by [x,, x]|[x;,
x,,]. For P-graph (m, o), the in-degree of vertex x,
d~(x), is defined as the number of arcs (y, x); note
that x, y € (muo). For example, there exists a path
from vertex D to vertex 4 on the P-graph given in
Fig. 2; the in-degree of vertex Cis two, i.e.d ~(C) = 2.

The structure of a process can be defined as a
P-graph. For synthesis problem (P, R, O), let m be
a subset of material set M, and o be a subset of
operating unit set O. Moreover, let us suppose that
sets m and o satisfy expression (4). Then, the structure
of the system with set m of materials and set o of
operating units is formally defined as P-graph (m, o).
This definition leads to the following properties:

(i) Materials and operating units are represented
by vertices of the M- and O-types, respect-
ively.

(ii) Two vertices, one of the M -type and the other
of the O-type, are linked by an arc if and only
if the corresponding linkage is realized in the
process represented by the graph.

(iii) The direction of an arc corresponds to that of
flow of a material.

Note that, in practice, no P-graph can arbitrarily
be the structure of a process. Any P-graph must
satisfy a set of combinatorial properties to appropri-
ately represent a feasible process structure. These
properties give rise to a set of axioms to be discussed
in the succeeding subsection.

Example 1. Production of PMM. This example is a
simplified version of an industrial process synthesis
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problem, the production of perchloromethyl-mercap-
tan (PMM), to illustrate the terms introduced. PMM,
i.e. material A, is produced from raw materials R =
{R;, R, R;, ..., Ry}. The result of experimental
investigations and past experience have enabled us to
identify the following set of plausible operating units.
00 = {({Rl’ RZ: RJ}’ {B})’ ({R29 RJa Rl’ R6}’ {C})9
({Rb RS’ F}’ {D})v ({st RJ’ F}’ {E})9 ({RS}’ {F}),
(D}, (G, H)), (E}, (G, I}), ({B, R}, {J, K, L),
(C. R}, {K. L, M}), ({K, Ry}, {N}), (L. F}, {O}),
({J’ R4}7 {P}), ({0}’ {S’ N}), ({ T}’ {S’ N})’ ({N’ Rs},
{U, F}), (N, R}, {(V, F})). (H, R}, (W, X}),
(I, F, Ry}, {W, X)), ({F, G, R}, {M, T, Y}), ({S},
{A4})}. The elements of set O, are also given in Table
1. P-graph (M,, O,), where My={R,, R,, R, .. ., R,
A, B, C, ..., X, Y}, is established in Fig. 3. The
structure given in this figure is not the maximal
structure of the problem; in fact, the maximal

A U v

Fig. 3. P-graph (M,, O,) of Example 1.
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structure is a substructure of this structure, as will be
elaborated later.

2.3. Solution-structure

The materials and operating units in a feasible
process structure must always conform to certain
combinatorial properties. For example, a structure
containing no linkage between a raw material and a
final product is unlikely to represent any practical
process. Hence, it is of vital importance to identify the
general combinatorial properties to which a process
structure must conform. More important, only those
structures satisfying these properties can be feasible
structures of a process: no other structures need be
considered.

A set of axioms has been constructed to express the
combinatorial properties to which a feasible process
structure should conform. Since the axioms are the
basic statements that cannot be proved and derived
from other statements in any theory, they should be
simple and obvious. Thus, an axiom system may
establish a stable basis for deriving the correspon-
dences in complex theoretical problems. Since process
synthesis does not belong to the simple problems, the
axiomatic approach is a possible way to explore its
theoretical basis.

P-graph (m, o) is defined to be combinatorially
feasible or to be a solution-structure of synthesis
problem (P, R, O) if it satisfies the following axioms:

(S1) Every final product is represented in the
graph, ie. Pcm.

(S2) A vertex of the M-type has no input if and
only if it represents a raw material, i.e. Vx e m,
d~(x)=0 if and only if x € R.

(S3) Every vertex of the O-type represents an oper-
ating unit defined in the synthesis problem, i.e.
0<O0.

(S4) Every vertex of the O-type has at least one
path leading to a vertex of the M-type repre-
senting a final product, i.e. Yy, € 0, 3 path [y,,
»], where y, e P.

(S5) If a vertex of the M-type belongs to the graph,
it must be an input to or output from at least
one vertex of the O-type in the graph, i.e.
Vx e m, 3(a, B) € 0 such that x e (@ Up).

In other words, for synthesis problem (P, R, O),
Axiom (S1) demands that all the final products must
be generated by the process represented by a solution-
structure; Axiom (S2) explicates the meaning of raw
materials, which, by definition, should not be gener-
ated by the process being synthesized. If a material
can be purchased as a raw material, and it can also
be produced by an operating unit in the system, then,

a feeder should be represented between the material
that is an input to the process and the same material
that is produced, and subsequently recycled to the
output of this operating unit. The cost of this feeder
can be specified to be zero, if necessary. According to
Axiom (S3), only those operating units that are
defined in the problem can appear in a solution-
structure; Axiom (S4) prohibits the existence of an
operating unit which is not contributing to product
generation; and according to Axiom (S5), only those
materials that belong to at least one operating unit of
the structure can exist in the structure.

The synthesis problem defined and the axiom
system presented in the preceding paragraph are
general in the sense that no constraint is imposed on
the numbers of products, raw materials and operating
units, the numbers of inputs and outputs of each
operating unit, and the number of connections
among the operating units and materials. For
example, no constraint is imposed on the existence of
recycling.

One of the basic properties of the set of solution-
structures, S(P, R, 0), is expressed by the following
theorem (Friedler et al., 1992).

Theorem 2.3.1. The set of solution-structures is
closed under union, i.e. the union of two solution-
structures remains a solution-structure. In other
words, if:

g,€S(P, R, O) and g, S(P, R, O0),
then
(o,va,)eS(P, R, O).

2.4. Maximal structure

A mathematical definition of the maximal structure
(superstructure) of a synthesis problem can be given
based on the terms defined in the preceding subsec-
tions. For synthesis problem (P, R, O), suppose that
S(P, R, O)+#0; then, the union of all solution-
structures, u(P, R, 0), is defined to be the maximal
structure, i.e.

u(P, R, 0)= U o.
€ S(P.R.0)

(1n

In this graph, each arc or vertex belongs to at least
one solution-structure, and each solution-structure is
a subgraph. Thus, the mathematical model of a
synthesis problem should be based on the maximal
structure; this model’s complexity is minimal.
Naturally, the maximal structure cannot be directly
determined algorithmically from its definition. Math-
ematical analyses of process structures and their
features provide the necessary framework to develop
an efficient algorithm for generating the maximal
structure.
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Since the set of solution-structures, S(P, R, 0), is
closed under the union operation according to Theo-
rem 2.3.1 and the cardinality of this set is finite, the
maximal structure is one of the solution-structures.
This is expressed by the following theorem (Friedler
et al., 1992).

Theorem 2.4.1. u(P, R, O)e S(P, R, 0).

Example 2. Let M,={A4, B,C, D, E, F,G, H, I, J,
K, L, M, N, Q, T, U, V} be the set of materials;
P, = {B}, the set of products; R, = {F, H, M, T}, the
set of raw materials; and:

0,= {({C’ D, F}’ {A })’ ({D}’ {B’ G})’ ({E}’ {B’ U})’
(F, G}, {C, D}), (G, H}, {D}), {H, I}, {E}),
(v, K}, {E}), (M}, {G)), (N, @}, {H}),
(T, Ul {1, (v}, {7h},

the set of operating units of synthesis problem (P,, R,,
0,). P-graph (M,, O,), illustrated in Fig. 4, is the
structure of a system determined by sets M, and O,.
Naturally, this is neither a solution-structure nor the
maximal structure of this synthesis problem since it
fails to satisfy Axioms (S2), (S4) and (S5). Axiom (S2)
is violated because material H is produced by an
operating unit, but H is a raw material. Axiom (S4)
is not satisfied because no path exists to product B
from operating unit 1; see Fig. 4. Axiom (S5) is also
violated because material L is not an input to or an
output from any operating unit. Obviously, even if
a structure violates only one axiom, it cannot be
a solution-structure. Figure 5, however, presents a
solution-structure; and Fig. 6, the maximal structure
of the problem.

2.5. Structural mappings

Manipulation of P-graphs by combinatorial algor-
ithms can be expressed more tersely by the so-called
structural mappings than by set theoretical formal-

L M N
°

QT uv

Fig. 4. P-graph (M, O)).
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8

Fig. 5. A solution-structure of synthesis problem (P,, R,,
0,).

ism. Given a P-graph (m, 0) [o S P(m) x #(m)), let us
define the following structural mappings.
Definition 2.5.1. For o’ <o, let:

¥Y-(0)= uU a,
(@.p)eo’
¥*)= v B
(x,p)eo’

and
Yo )=¥ " (o)U¥*(0).

Among these mappings, ¥~ yields the set of ma-
terials of a process structure, each of which is an inlet
to at least one operating unit found in set o', ¥*
yields the set of materials, each of which is an outlet
from at least one operating unit found in set o’, and
¥ yields the set of the materials, each of which is
cither an inlet to or an outlet from at least one
operating unit found in set o’. Definition 2.5.1 implies

M T U

Fig. 6. Maximal structure of synthesis problem (P,, R,, O,).
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that for the two sets, m’=m and o’ S o, pair (m’, 0")
is a P-graph if and only if ¥(o")=m’.
Definition 2.5.2. For m’<m, let:

@~ (m)={(@p)l(@p)eo and frm’ # 0},

@ *(m") ={(@p)l(xp) €0 and arnm’ +# B},
and
em)=¢ (m)ve*(m).

Literally, ¢ ~ yields the set of operating units of a
process structure, each of which produces some ma-
terials found in set m’ as its outlets, ¢ * yields the set
of operating units, each of which consumes some
materials found in set m’ as its inlets, and ¢ yields the
set of operating units, each of which either produces
or consumes some materials found in set m’.

Example 2 revisited. To illustrate the structural
mappings, let o’ be the subset of O, i.e.

o'={{H, I}, {E}), ({J, K}, {E})}<O,.
Then,
¥Y-(0)={H, I, J, K}, ¥* (o) = {E}

and W(o')={E, H, I, J, K}.
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Furthermore, let m’ = {C, D}; then,
o~ (m)={{F, G}, {C, D}), {G, H}, {D})},
@ *(m)={{C, D, F}, {4}), (D}, {B, G})}
and
o(m)={{F, G}, {C, D}), (G, H}, {D}),
(C, D, F}, {4}), (D}, {B, G})}

3. ALGORITHM FOR GENERATING THE MAXIMAL
STRUCTURE

According to the convention of computer science,
the algorithm for maximal structure generation
(MSG) is given in Pidgin Algol introduced by Aho
et al. (1974); also see Papadimitriou (1982). A brief
summary of Pidgin Algol is given in Appendix A.

The algorithm MSG in Pidgin Algol is presented in
Fig. 7. This algorithm has two major parts, the
reduction part and the composition part. In the
reduction part (statements stl, st2, st3 and loop lp4
of Fig. 7), the materials and operating units that must

input: sets M, P, R, O;

st6: p:=P m:=O0; o:=,

1p7: while p is not empty do
begin
let x be an element of p;
m:= mU{x};
or := ¢"({x});
0:=0Uo;
p:=@EUY¥ () \ RUm)
end;

st8: m:= ¥(o)

end

comment: PEM, REM, O< (p(M) Xp(M)), ONM = &, PNR = J;
output: maximal structure (m, 0) of synthesis problem (P, R, O);

begin
comment: reduction part of the algorithm;
stl: O:= 0\ ¢ ([R);
s2: M := ¥(0);
st3: r:=¥Y(O)\ (¥+(O)UR);
Ip4: while r is not empty do
begin
let x be an element of r;
M:=M\{x};
0:= o+({x});
0:=0\o;
r:=@EU¥+o)\ ¥+ \ {x}
end;
coS: if PNM#P then stop;

comment: there is no maximal structure;
comment: composition part of the algorithm;

Fig. 7. Algorithm MSG.
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not belong to the maximal structure are directly and
partially excluded from consideration. In the compo-
sition part (statements st6, st8 and loop Ip7 of Fig. 7)
those and only those materials and operating units
are selected from the structure resulting from the
reduction part that must belong to the maximal
structure.

In generating the maximal structure for synthesis
problem (P, R, O), the operating units producing the
raw materials are excluded from consideration by
statements st1 and st2. Set r, defined in statement st3,
contains the materials that are only consumed but
never produced by the operating units; however,
these materials are not defined by the synthesis
problem as raw materials. Obviously, this set of
materials also need be excluded from the maximal
structure. This is achieved in loop Ip4, after which the
set of materials M and that of operating units O
satisfy Axiom (S2). Condition co5 checks if Axiom
(S1) is satisfied, i.e. if every product is represented in
the process structure generated thus far. If the con-
dition is not satisfied, no maximal structure exists for
the synthesis problem. Otherwise, the maximal struc-
ture is constructed stepwisely by collecting the oper-
ating units satisfying Axiom (S4) in loop Ip7. Note
that Axiom (S3) is automatically satisfied since only
the operating units defined by the synthesis problem
are considered by the algorithm. The set of materials
contained in the maximal structure are obtained
through the mapping operation of statement st8.
Such a mapping assures that Axiom (S5) is satisfied
by the maximal structure; the maximal structure of
Example 1 generated by algorithm MSG is given in
Fig. 8.

Example 2 revisited. Let us generate the maximal
structure of Example 2 by algorithm MSG. In the
input step of the algorithm M, P, R and O denote the
following sets:

M={4,B,C,D,E F,G H,IJ K, L M, N, Q,
T’ U9 V},

P={B},

R={F, H, M, T}

N ([

n

(F, G}, {C, D}), (G, H}, {D}), {H, I}, {E}),
(s, K}, {E}), (M}, {G}), (N, @}, {H}),
(T, uh, {mh, (v} {(IHt

Structure (M, O) is given in Fig. 9a. Operating units
generating raw material are identified in statement st1

by:
¢~ (R)={{N, 0}, {H})}
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Fig. 8. Maximal structure of Example 1.

v

This operating unit is excluded from further consider-
ation after statements st1 and st2 are executed, where:

0 =0\¢~(R)={({C, D, F}, {4}), (D}, {B, G}),
(£}, {B, U}, ({F, G}, {C, D}), ({G, H}, {D}),
(H, 1}, {E}), ({J, K}, {E}), ({M}, {G}),
dT Ul {h, (v} 7}

and

M =¥(0)
=4, B,C,D,E F,GH, LJ,K, M, T, U, 'V,

This gives rise to the structure given in Fig. 9b. B
definition, we now have:

¥Y-(0)={C,D,E F, G HI,J,KMTU,YV,
and

¥+(0)={4, B, C, D, E, G, I, J, U}.
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uv

A B

(c) Structure generated after the first iteration of loop Ip4.

237

(b) Structure generated by statements stl and st2;
materials belonging to set 7 of st3 are underlined.

(d) Structure generated after the third iteration of loop 1p4.

Fig. 9. Structures generated in the reduction part of algorithm MSG for Example 2.

Hence, in statement st3, we obtain:
r=¥-(O\¥Y*()uR)={K, V}.

This set of materials is strictly consumed by the
operating units although they are not raw materials.
Thus, they must be excluded from the maximal
structure.

Since r is not empty, the algorithm enters loop Ip4.
At the end of the first iteration of the loop, we
have:

M = M\(K)
={4,B,C,D,E F, G H I,J MT,U,V}

o=0*({KD={{/ K}, {ED},

0 =0\o ={({C, D, F}, {4}), (D}, {B, G}), {E},
{B, UY), ({F, G}, {C, D)), (G, H}, {D}),
E{I;,}l}, {ED), (M}, {G}), (T, U}, {IH), ({V},
I}, '

¥+*(o)={E},
¥+()={4,B,C, D, E G, I J, U}
and

r=@u¥*tE\¥H(ON\K}={V},

where r is an updated set of materials which are
strictly consumed by the operating units while they
are not raw materials. Structure generated at the end
of this iteration is given in Fig. 9c. Naturally, all
elements in set r remain to be excluded from the
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maximal structure. The algorithm exits loop Ip4 after
three iterations; in the third iteration, we have the
following steps:

M=M\{J}={4,B,C,D,E,F,G, H,1,M,T,U},
o=¢*({JP=0,

O0=0\0= {({C’ D, F}r {A })’ ({D}’ {B’ G}), ({E},
{8, UY), ({F, G}, {C, D}), ({G, H}, {D}),
(H, i}, {E}), (M}, {G}), (T, U}, {I})},

¥* () =9,
¥*(0)={4, B,C, D, E, G, I, U}

and

r=@ru¥*\¥*(ON\{J}=0.
The resultant structure is given in Fig. 9d. Since:
P={B}cM={4,B,C, D, E,F,G H,I,M, T, U},

the maximal structure exists for this problem; it is
constructed starting from product B, by adding oper-
ating units one by one to the existing structure in the
iterations of loop lp7. For example, the first iteration
of loop Ip7 yields the following:

m=mu{B} ={B},
or=¢~({B) ={({D}, {B, G}), {E}, {B, UD)},
o =ovo,={({D}, {B, G}), {E}, {8, U})}

and
p=(pu¥ (0 )\(Rum)={D, E}.

The structures after each iteration of loop Ip7 are
given in Fig. 10, the last of which is the maximal
structure for the problem where its materials are
determined by statement st8.

4. PROOF OF THE VALIDITY OF ALGORITHM MSG

Since the generation of maximal structure is a
fundamentally important problem in process syn-
thesis, its algorithm needs to be validated. Let syn-
thesis problem (P, R, O) be given on M and the
maximal structure u(P, R, O) of the synthesis
problem be denoted by (1, ), if the structure exists.
Let us also define the sets O'=0\¢ “(R) and
M’ =¥(0’). The proofs of the following theorems
can be found in Appendix B.

Theorem 4.1. If S(P, R, 0)#0, then: (i)
u(P, R, O)cs(M’, 0'); and (ii) for x e(M’AR),
A, o)(x) =0.

Theorem 4.2. Let us suppose that (m, o) e S(P, R,
O) and that P-graph (m’, o’) is a subgraph of (M, O).
If (m, 0)=(m’, 0’) and d~(x)=0 for x € (m’\R),
then x ¢ m, i.e. (m’\{x})2m.

F. FRIEDLER ef al.

Theorem 4.3.1f x ¢ m and («, B) € @ §y. 0 ({x}), i.e.
(a, B)€ O’ and x € B, for P-graph (m, 0)s=(M’, O),
then («, B) ¢o.

Let sets M and O of algorithm MSG be denoted by
M" and O, respectively, immediately after loop Ip4
is completed. P-graph (M", 0") satisfies Axiom (S2);
an element of set M” has no input if and only if it
represents a raw material as described by the next
theorem.

Theorem 4.4. (i) (M", O") is a P-graph, i.e.
0"s(P(M") x P(M"));, and (ii) P-graph (M", 0")
satisfies Axiom (S2) of (P, R, O).

Theorems 4.2, 4.3 and 4.4 gives rise to the next
corollary.

Corollary 4.1.1f S(P, R, O) # & and (m, 0) € S(P,
R, 0), then (m, 0)=(M", 0") and P-graph (M", 0")
satisfies Axiom (S2).

Theorem 4.5. Let P-graph ¢ = (m, 0) be given and
pSm. Also let o'’={y|yeo and there exists path
[y, 2] in o such that zep}, m’=¥(o’) and o’ =
(m’, 0"). Then, d; (x) = 0if and only if d; (x) = 0 for
any element x of m’.

Let us define the sets o* ={y|y € 0" and there
exists path [y, z] in (M"”, 0") such that z € P} and
m* =¥(o*).

Theorem 4.6. If P M", then (m*, o*)eS(P,
R, 0).

Theorem 4.7. S(P, R, O)# ¢ if and only if
PceM”

Theorem 4.8. If P M", then 6 = o*.

Let o’ and m’ denote sets 0 and m, respectively,
defined in loop Ip7 of algorithm MSG immediately
after the looping is completed.

Theorem 4.9. If P M", then o*=0".

Theorem 4.10. Algorithm MSG determines the
maximal structure of a synthesis problem in a finite
number of steps, if it exists.

5. COMPLEXITY ANALYSIS OF ALGORITHM MSG

Even a validated algorithm might be useless if
its execution or computer realization is excessively
tedious for a problem encountered in practice. Theor-
etically, complexity analysis can yield information on
the algorithm’s behavior as the size of the problem
increases (see, e.g. Hartmanis, 1989). In the worst
case, an upper bound is obtained for the number of
elementary steps of the algorithm as a function of the
size of the problem. It is usually sufficient to have an
upper estimate for this function; this is why the
complexity analysis of an algorithm adopts the so-
called “big-oh” notation of the mathematics (see, e.g.
Rosen, 1990) to represent the order of magnitude of
the complexity.

Definition 5.1. For two functions of positive in-
tegers fand g, f(x) = O(g(x)) if there exists a positive
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(a) Structure after the first

iteration of loop Ip7. of loop Ip7.

(d) Structure after the fourth iteration of loop Ip7.

(b) Structure after the second iteration

B U

(c) Structure after the third iteration
of loop Ip7.

(e) Structure after the fifth iteration of loop lp7.

Fig. 10. Structures generated in the composition part of algorithm MSG for Example 2.

constant C such that |f(x)| < Clg(x)| for all but
finitely many positive integers.

Note that the big-oh notation is not unique, the
function g(x) is usually chosen from well-known
functions such as x". If an algorithm solves a problem
of size x by f(x) elementary steps and f(x) = O(g(x)),
then the complexity of this algorithm is g(x). For the
most effective class of combinatorial algorithms, g(x)
is a polynomial, i.e. the complexity of these algor-
ithms is polynomial. The complexity of the majority
of the combinatorial algorithms, however, is greater
than polynomial; e.g. it can be exponential.

Given synthesis problem (P, R, O) on material set
M, let us denote the number of elements of set M as

! and that of set O, as n, i.e. |[M|=/ and |O|=n.
Furthermore, let d,, and d, be the maximal degrees of
vertices of the M- and the O-types, respectively, of
P-graph (M, O). The complexity of algorithm MSG
will be analyzed on the basis of the following data
structures.

Let us define matrix M of / x d,,, matrix O of
n x d,, vector i, of I, vector i, of n and vector i, of
(n + 1). P-graph (M, O) is stored in matrices M and
O in the following manner. Each row of matrix M or
O corresponds, respectively, to a vertex of the M-
type or the O-type of P-graph (M, O). Suppose that
for x € O and y € M, arc(x, y) exists from vertex x to
vertex y. Then, this arc is represented as a pointer
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with a positive sign in the row of vertex x in matrix
O and with a negative sign in the row of vertex y in
matrix M. An arc from a vertex of the M -type to that
of the O-type is represented similarly.

The complexity of statement st1 of algorithm MSG
in Fig. 7 is O(/-d,"d,). This is determined as
follows: there can be at most / materials defined in set
R for a synthesis problem. For each material in the
set, there can be at most d,, operating units producing
this material. Thus, statement stl needs to manip-
ulate matrix M at most (/- d,) times to calculate
¢ ~(R). In each of the (/ - d,,) manipulations, matrix
O will be modified d, times, and matrix M will be
modified one time to effect the calculation of
[O\@ ~(R)]. As a result, statement stl can involve at
most [/ - d,, - (d, + 1)] matrix manipulations, thereby
giving rise to the complexity of O(/ - d,,- d,). Simi-
larly, the complexity of statement st2, statement st3,
loop Ip4, loop Ip7 or statement st8 can be estimated,
respectively, to be O(/ - d,), O(l -d,), O( - d,, - d,),
O(l-d,-d,)or O( - d,); hence, the overall complex-
ity of algorithm MSG is O(/ - d,, - d,); in fact, it is
polynomial, thereby indicating that it is an efficient
algorithm.

6. OTHER APPLICATIONS OF ALGORITHM MSG

Algorithm MSG can be adopted in the preliminary
step in solving the MINLP model of process syn-
thesis, i.e. in the step of model generation, whenever
the mathematical programming approach is appli-
cable. Moreover, this algorithm can validate existing
“superstructures” or can reveal that the solution is
unattainable for the synthesis problem under con-
sideration. From the available databases and
knowledge bases, algorithm MSG selects the set of
those processing schemes, such as reaction paths and
separation sequences, which can be incorporated into
a process to be synthesized, if the set of products and
the set of raw materials are specified.

7. CONCLUDING REMARKS

The term, maximal structure, of process synthesis
is defined mathematically; it is the union of all
combinatorially feasible process structures and is also
the combinatorially minimized superstructure of a
synthesis problem. The mathematical model of a
synthesis problem should be based on this maximal
structure. Moreover, a novel, exacting, efficient algor-
ithm for generating the maximal structure, algorithm
MSG, is presented.
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NOMENCLATURE

A = Set of arcs of a P-graph
d~ =In-degree of a vertex
(m, o) = P-graph
m*, m, M = Set of materials
0*, 0, O = Set of operating units
O = Order of magnitude
P = Set of products
(P, R, O) = Synthesis problem defined by the specific
sets of products (P), raw materials (R) and
operating units (O)
R = Set of raw materials
S(P, R, O) = Set of solution-structures for synthesis prob-
lem (P, R, O)
V = Set of vertices of a P-graph
[y» y;]=Path in a P-graph
n x m = Size of a matrix with n rows and m columns
X x Y = Cartesian product of sets X and Y
a, B = Set of materials
(@, B) = Operating unit
u(P, R, O)=Maximal structure for synthesis problem
(P, R, 0)
¢ = Solution-structure
¥, ¥-, ¥* = Structural mapping from a set of operating
units to a set of materials
@, @ ~, ¢ * = Structural mapping from a set of materials
to a set of operating units

& = Empty set
2 = Power set
V = For all
3 = There exists
} = Set

| | = Cardinality of a set or the absolute value of
a real function
\ = Set difference
(=)< = (Proper) subset or subgraph
€ = Element
¢ = Not an element
N = Intersection of sets or graphs
v = Union of sets or graphs
'le" = Union of all the elements of sets x;(i € /)
i€
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APPENDIX A
Short Summary of Pidgin Algol

Pidgin Algol is a high-level language whose purpose is to
describe algorithms for publication and mathematical exam-
ination (Aho et al., 1974; Papadimitriou, 1982). This
language uses traditional mathematical and programming
language constructs, such as expressions, conditions, state-
ments and procedures. It does not have a fixed set of data

types.

Statements

variable: = expression;
if condition then statement else statement;
while condition do statement;
repeat statement until condition;
for variable: = initial-value step step-size until final-value do
statement,
for all x € X do statement;
label: statement;
goto label;
begin
statement;
statement;

statement;
end;
procedure name (list of parameters): statement
return;
return expression;
procedure-name (arguments);
read variable;
write expression;
comment comment;
any other miscellaneous statements
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APPENDIX B
Proof of Theorems

The following obviously satisfied propositions have been
used in the proof of the theorems:

Proposition Al. If xem for P-graph (m, o), then
d=(x)=lo ~({x})-

Proposition A2. Let synthesis problem (P, R, O) be given;
then

(i) Axiom (S5) is satisfied by P-graph (m’, o) if and only
if m"=%¥(o’) and
(ii) If P-graph (m’, o) satisfies Axiom (S5), then Axiom
(S1) is satisfied by (m’, o’) if and only if P=¥(o’).
(iii) If (m’, 0’) e S(P, R, O), then m’ =¥(0’).

Proof of Theorem 4.1

(i) If S(P, R, O) # (&, then, there exists the maximal
structure (i, 0) of synthesis problem (P, R, O). Further-
more, according to Theorem 2.4.1, (1, 6) € S(P, R, O), the
maximal structure must satisfy the axioms of solution-struc-
tures. Axiom (S3) implies that 6 =0, and Axiom (S2) asserts
that if x € R and (a, B) € ¢ ~({x}), then (a, B)¢4. In other
words, 6ne “(R)=. Thus, 6=0\p “(R)=0". It fol-
lows from Proposition A2 that m =W¥(@G)<W(O')=M".
With mcM’ and 6<0’, we have (1, 6)=u(P, R,
o)ys(M’, 0').

(i) For x e(M'nR), ¢4, of{x)DE0Gr, (M'NR)S
0~ (M'OR)Sp~(R), 03, o (x}) 0" and O’ ~(R) =
; thus, @, 0/({x}) = . Since dir. 0y(*) = 10 Gr, o ({* DI
according to Proposition Al, d, o)(x)=0.

Proof of Theorem 4.2

Since (m, o) is a solution-structure, Axiom (S2) implies
that if x e m and d,, ,(x) =0, then x € R. Consequently, if
d. »(x) =0 and x ¢ R, then x ¢ m.

Proof of Theorem 4.3

(m, o) is a P-graph; therefore, o =(#(m) x #(m)). This
implies that for (a, B) € 0, B € #(m), which, in turns, implies
that § =m. Stated differently, if § is not a subset of m, then
(o, B)€eo.

Proof of Theorem 4.4

(i) It will be proved first that (M, O) of algorithm MSG
is a P-graph in every iteration of loop Ip4. At the initializa-
tion of loop 1p4 (statements stl, st2 and st3 of Fig. 6), that
(M, O) is a P-graph holds trivially. Let us assume that (M,
0) being a P-graph holds at the end of a certain iteration
of loop Ip4. It will be proved that (M, O) being a P-graph
also holds at the end of the next iteration. For x er (r is
defined in loop Ip4 of algorithm MSG as a set of materials
which are strictly consumed by the operating units while
they are not raw materials), V(a, )€ O, x ¢ B. Thus, if
BePM), then BpeP(M\{x}). In other words, if for
(o, B) € O, B € P(M) at the end of a certain iteration of loop
Ip4, then B e (M) at the end of the next iteration. For
xer, Y(a, )€ O\o (o is defined in loop lp4 of algorithm
MSG as a set of operating units each of which has x as part
of its inlet materials), x ¢ a. This implies that if « € #(M),
then o € 2(M\{x}).

(ii) Let y, =(M’, 0’) and y, = (M", O"). Since y,<7,, for
xeM’", d;(x)<d,(x). According to Theorem 4.1,
d;(x)=0 for x e(M’'nR); hence, if x e(M"NR), then
d,; (x) =0. Conversely, in every iteration of loop Ip4, if
d=(x)=0, then x € R for x e M\r.

Proof of Theorem 4.5

From o’'co0 and m’ = ¥(0’), it follows that m’ = ¥(0’) =
Y(o)=m; thus, 6’ = 6. Moreover:

(i) ¢’ = o implies that if d(x) = 0, then d,; (x) = O for any
element x of m’.

(ii) Since ¥~ (0" )2{x|x em’ and d (x) =0}, it is suffi-
cient to prove that for any element x of ¥~ (0"), d, (x) =
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d;(x). Let m"=¥~(0) and o"=¢,({x}) for some
xem”. Then, o"c¢;(Mm")=¢; (¥ (0'), and from the
definition of (m’, 0’), ¢ (¥ ~(0’)) So’. Furthermore, 0" <o
holds trivially. Thus, we obtain d; (x)=|o"|=d; (x) by
resorting to Proposition Al.

Proof of Theorem 4.6

(i) Axioms (S4) and (SS5) are trivially satisfied.

(ii) Now, according to Proposition A2, Axiom (Sl) is
satisfied if and only if P =¥(o*). By Theorems 4.4 and 4.5,
d~(x) =0 implies that x € R for any element x of M". Since
PcM" and PnR =0, the definition of o* implies that for
any x € P, there exists (a, f)eo* such that x e 8. This
implies that P<=W¥(o*).

(iii) For x e M”, d ~(x) = 0 if and only if x € R; therefore,
Theorem 4.5 implies that for any x e m*, d. ,(x) =0 if
and only if x € R. Axiom (S2), therefore, is satisfied.

(iv) Since 0*< 0" =0, Axiom (S3) is satisfied.

Proof of Theorem 4.7
(i) From Corollary 4.1, if S(P, R, O)# and
(m, 0)e S(P, R, O), then (m, o)=(M", O"). Axiom (S1)
implies that P <m, which in turn implies that P M".
(ii) If Pc=M", then according to Theorem 4.6,
(m*, 0*)e S(P, R, O).

Proof of Theorem 4.8

(i) Theorem 4.6 implies that o*c<a.

(ii) 6 = 0" thus, it follows from Axiom (S4) that if y € 5,
then there exists path [ y, z] such that z € P. This implies that
oco*.

Proof of Theorem 4.9

The statements that if x € p in any iteration of loop lIp7,
then ¢ ~(x)So’, that m’ is the set of x where x € p in any

iteration of loop Ip7, and that if y eo’, then ¥~ ({y}Dc
(m’UR) are trivially satisfied by sets m” and o’.

(i) It will be proved by induction on the number of vertices
of the O-type in paths of (M", 0") thatif y e 0*, then y € 0’,
i.e. 0*<co’. Let us first examine the path [y,, x,] = (y,, x,),
where x, € p and y, € O". Since x, € p as defined in statement
st6 of Fig. 7 and y, € ¢ ~({x,})<0’, y, € 0’. Suppose that for
any path [y,_y, xJ= (a1, X )| Gasis Pa2)l oo [(xy
I x)of (M",0"), y,€0’ (i=1,2,..,n—1)ifx, €P.
NOW, let [ym xl] = (yv xn)l(xm yn—l)l[yfl— [H] xl] be a path in
(M",0")and x, € P.Since y,_,€0’, ¥~ ({y,_1})S(m'UR).
Nevertheless, x,e ¥~ ({y,_,}) and x,¢R, and therefore,
x,€m’. This implies that ¢ ~({x,})<o’, but y,e ¢ ~({x,})
and thus, y,eo0’.

(ii) At the outset of loop Ip7, set o is empty and element
(a, B)e(M", O") has been substituted into o’, if for an
actual element of p, x is an element of . For 0* 20/, it is
sufficient to prove that for any element x of p in loop Ip7,
x € P or there exists path [x, z] such that z € P or x € P. At
the initialization of loop Ip7, this is trivially satisfied. Let us
suppose that the preceding statement is satisfied in n steps
of loop Ip7. If p # &, then for x € p, 0, = ¢ ~({x}) and the
possible new elements of p are the elements of ¥ ~(o,).
But, for any element x’ of W~(o,), there exists an
(2, B)€o,(=0’) such that x’ea and x € f. Consequently,
there exists a path, [x’, z] =[x’, x]|[x, z].

Proof of Theorem 4.10

From Theorem 4.7, there exists the maximal structure if
P<=M". Suppose that PcM”; then (1, 6)c(M", O")
according to Corollary 4.1. From Theorems 4.8 and 4.9,
0 =0* =0’ and i =m* =m’. This proof will be complete
after it is proved that algorithm MSG terminates in a finite
number of steps. The finiteness of the algorithm is proved
in Section 5 along with an analysis of its complexity.



