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A highly effective algorithmic method is proposed for optimally synthesizing an azeotropic-
distillation system from an extensive set of candidate operating units, i.e., functional units. The
method has been derived by resorting to the graph-theoretic approach to process-network
synthesis based on process graphs (P-graphs); it also resorts to the methodology established in
our previous contribution for dividing the residue curve map (RCM) of a material system, i.e.,
mixture, to be separated into partitioned materials. This allows the entire space of the RCM to
be taken into account in composing networks of candidate operating units, thereby preventing
the localization of search. Moreover, the RCM is transformed into the flow-rate map, where any
material is quantitatively defined by the molar flow rates of its components instead of the
concentrations as in the RCM. This renders it possible to eliminate the nonlinearity in the
governing equations of the candidate operating units. The efficacy of the method is amply
demonstrated through the well-known example of separating ethanol from its aqueous solution
with toluene as the entrainer. The method is applicable to other complex processes with phase
transition, and/or phase separation, e.g., crystallization, extraction, reactive distillation, and
their combinations.

Introduction

The current contribution is concerned with the opti-
mal synthesis of azeotropic-distillation systems. Specif-
ically, it aims at developing an algorithmic and system-
atic method for synthesizing an azeotropic-distillation
system from an extensive set of candidate operating, i.e.,
functional, units. It is a sequel to our contribution in
this journal, in which a methodology is proposed for
identifying plausible operating units for either algorith-
mic or heuristic synthesis.1

Analyzing an azeotropic-distillation system is exceed-
ingly difficult because of its severe nonlinearity. This
complexity is profoundly compounded in design, i.e.,
synthesis, by the combinatorial complexity involved. The
majority of existing azeotropic-distillation processes
have been developed and designed through heuristic
methods: relatively little was known about the funda-
mental aspects of such processes until approximately 2
decades ago. Since then, rapid progress has been made
on the analyses of azeotropic-distillation systems.2-9 The
majority of the available approaches, often termed
analysis-driven syntheses, are essentially based on the
first principles and/or heuristic rules derived from
analyzing the residue curve map (RCM) of the system
of interest.3-8 For instance, the method proposed by
Malone and Doherty3 comprises a series of steps derived
from a comprehensive set of rules or heuristics. These
methods have been widely adopted in industry and have

led to significant improvement in various processes
involving azeotropic-distillation systems. The analysis-
driven or heuristic methods are applicable to both
homogeneous and heterogeneous systems. The algorith-
mic syntheses of azeotropic-distillation systems, mainly
resorting to mixed-integer-nonlinear programming
(MINLP), however, have apparently been confined
hitherto to homogeneous systems;9-11 moreover, these
syntheses have involved relatively simple RCMs of
three-component systems. The combinatorial complexity
is not excessive, and only a limited number of flowsheets
or network structures are obtainable. Despite the
encouraging progress made to date, much remains to
be addressed for establishing a systematic and compre-
hensive methodology for algorithmically synthesizing
heterogeneous as well as homogeneous azeotropic-
distillation systems.

Unlike relatively ideal distillation systems, the physi-
cal/chemical intricacy of azeotropic-distillation systems
leads to extraordinary combinatorial complexities. These
complexities tend to give rise to an exceedingly large
number of plausible or candidate operating units that
should be taken into account in synthesis. In our earlier
work, an extensive analysis of the azeotropic-distillation
system for separating ethanol from its aqueous solution
with toluene as the entrainer has demonstrated that
hundreds of operating units are plausible even for such
a relatively simple system.1 As a result, the number of
combinatorially feasible flowsheets that can be gener-
ated from these plausible operating units easily exceeds
100 000. Naturally, a heuristic method can search
through only a minute segment of this vast solution
space. It also prevents the implementation of a conven-
tional MINLP method because of the exponential nature
of any algorithm based on it; a nonconventional ap-
proach is indeed needed.
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In the current algorithmic method for synthesizing
azeotropic-distillation systems based on process graphs
(P-graphs),13-16 the mathematical models are derived
for the operating units involved, i.e., distillation col-
umns, mixers, and decanters, through the application
of RCMs and analytical geometry. The boundaries on
the RCMs, i.e., distillation boundaries and liquid-liquid
equilibrium envelopes, are linearized piecewisely for
simplicity. This is followed by the algorithmic generation
of the operating units and their synthesis. The efficacy
of the method has been amply demonstrated by syn-
thesizing optimal and near-optimal flowsheets produc-
ing pure ethanol from its aqueous solution via azeotropic
distillation.

Graph-Theoretic Approach to Process-Network
Synthesis

The three major facets of the current graph-theoretic
approach to process-network synthesis involving the
solution of a MINLP or MILP problem are the repre-
sentation of the process structure by unique directed
bipartite graphs, termed P-graphs, a set of axioms
describing the main features and characteristics of a
combinatorially feasible structure of the process as
depicted by the P-graphs, and a set of the algorithms
derived by virtue of the axioms for implementing the
approach. These three facets are fully delineated in the
earlier publications.13-16 It has been ascertained that
the current graph-theoretic approach to process-network
synthesis gives rise to a rigorous and inordinately
efficient method for solving a MINLP or MILP problem;
apparently, no comparable method is available.

Method

A method for the optimal synthesis of an azeotropic-
distillation system is framed by prudently adapting the
graph-theoretic approach to process-network synthesis
based on P-graphs.

Representation of the System. The thermody-
namic pinches/boundaries, e.g., azeotropes, distillation
boundaries, and boundaries of liquid-liquid equilibrium
envelopes, which are of critical importance for azeotropic
distillation, can readily be represented by RCMs;3,4 it
is natural that the current work resorts to the RCMs
for representing azeotropic-distillation systems; the
RCM of the ethanol-water-toluene system is illus-
trated in Figure 1.1

(a) Piecewise Linearization of Boundaries on
RCMs. As will be delineated subsequently, the nonlin-
earity of boundaries of RCMs will lead to the nonlin-
earity of the constraints involved in the MINLP problem
that need be solved for optimal synthesis. This nonlin-
earity usually gives rise to inordinate difficulty in the
solution. To circumvent such difficulty, the boundaries
are linearized or sectionally linearized. As an example,
distillation boundaries XH, YH, and ZH and the bound-
ary of the liquid-liquid equilibrium envelope, WQRT,
in Figure 1 are linearized or sectionally linearized,
thereby resulting in Figure 2. The accuracy of the
representation can be modulated as desired by varying
the number of linear sections.

(b) Partitioning Materials. A countless number of
plausible materials may be identified even for a system
containing as few as three components: The RCM of
such a system is a two-dimensional plane, i.e., area, or
higher dimensional space. For exhaustive inclusion of

all plausible alternatives, therefore, a need exists to
partition all of the materials within each of the two-
dimensional areas or higher dimensional spaces, defined
by various boundaries in the RCM. Any heuristic
method can take into account only a minute portion of
the RCM of interest.1

Generally, the products and feed for any distillation
column should be in a single region created by distil-
lation boundaries. When the significant curvature of a
distillation boundary is exploited, however, the products
and feeds can be in the two distinct regions straddling
this boundary. Nevertheless, in this situation, the
design and operation of the distillation columns exploit-
ing the significant curvature are severely affected, often
negatively, by the reliability of thermodynamic data,
many of which contain appreciable error. In addition,
large amounts of recycling streams frequently are
needed to cross distillation boundaries when exploiting

Figure 1. RCM of the ethanol (E)-water (W)-toluene (T) system:
F, feed; X, Y, Z, binary azeotropes; H, ternary azeotrope.

Figure 2. Linearized RCM of the ethanol (E)-water (W)-toluene
(T) system illustrating the partitioned materials.
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the curvatures. Because this tends to lead to both high
capital cost and energy consumption, it is often advis-
able to avoid the situation when alternative approaches
for crossing distillation boundaries are available, e.g.,
those taking advantage of phase splitting.

Unlike in our previous work,1 the materials are
partitioned only according to the critical curves and lines
in the current work; the uniqueness of the intermediate
products from separation of any partitioned material
can be guaranteed by the pertinent constraints, as will
be delineated in a subsequent section. For the example
in Figure 2, the entire area of the RCM is classified into
those materials occupying the points, i.e., E, W, T, and
F; those occupying the lines, i.e., L12, L7.W, L7.E, L8.E, L8.T,
L9.T, L9.W, L10.W, L10.E, L11.E, and L11.T; and those occupy-
ing the areas, i.e., L1, L2, L3, L4, L5, and L6. The
resultant partitioned materials are listed in Table 1.

Mathematical Models of Operating Units. Rep-
resentation by RCMs is inordinately effective for distil-
lation systems.3,5 Nevertheless, each coordinate of any
RCM signifies the concentration of a component in the
mixture or material of interest, thereby resulting in
nonlinear mathematical models of the operating units.
For instance, the most frequently encountered expres-
sion for such models is

which is the mass balance equation for component i
(i ) 1, 2, ..., n). In this expression, n is the number of
components; c i

j and c i
k, the molar concentrations of

component i; and M j ( j ) 1, 2, ..., s) and Mk (k ) 1, 2,
..., t) the total molar flow rates in input stream j (j ) 1,
2, ..., s) to and output stream k (k ) 1, 2, ..., t) from any
operating unit with s inputs and t outputs, respectively.
These expressions are obviously nonlinear when every
M j, c i

j, Mk, and ci
k is a free variable. Such nonlinearity

leads to the nonlinearity of the constraints involved in
the MINLP problem that need be solved for optimal
synthesis; consequently, almost unsurmountable dif-
ficulty arises in solution. In contrast, the flow-rate-based

representation, in which a stream of material is ex-
pressed in terms of the molar flow rates of the compo-
nents in the stream, eliminates the constraints in terms
of the molar concentration and total molar flow rate
expressed by eq 1, thereby liberating us from the
difficulty arising from nonlinearity, as will be demon-
strated subsequently. For convenience, the diagram for
the flow-rate-based representation is termed the flow-
rate map, or the FRM, analogous to the RCM. Naturally,
the coordinates of the FRM are the molar flow rates,
Mi’s, of individual components in the material.

(a) Quantitative Definition of Materials. The
models of partitioned materials need be quantitatively
represented prior to constructing the models of operat-
ing units. For clarity and simplicity, the focus at the
outset will be on three-component systems.

Any material at point A1 on the RCM, termed mate-
rial A1 in short and characterized by its compositions,
is represented in the corresponding FRM as

where M is the point in the FRM whose coordinates M1,
M2, and M3 are expressed in terms of the molar flow
rates of components in material A1; v1, the total molar
flow rate of material A1; and ci

1, the concentration, and
Mi, the molar flow rate of component i in the partitioned
material. Because v1 is a free variable, a point on the
RCM is transformed into a straight line in the corre-
sponding FRM.

Any partitioned material on a straight line deter-
mined by two points, one for material A1(c1

1,c2
1,c3

1) and
the other for material A2(c1

2,c2
2,c3

2), in the RCM is repre-
sented in the corresponding FRM as

where v1 and v2 are the total molar flow rates of
materials A1 and A2, respectively; ci

1 and ci
2, the con-

centrations of component i in materials A1 and A2,
respectively; and Mi, the molar flow rate of component
i in the partitioned material. Because both v1 and v2

are free variables, a straight line on the RCM is
transformed into part of a convex area in the corre-
sponding FRM.

Any partitioned material in a convex area enclosed
by the straight lines, each connecting two successive
ones of points A1-Am in the RCM, can be represented
in the corresponding FRM as

where vj is the total molar flow rate of material Aj; and
c i

j, the molar concentration, and Mi, the molar flow

Table 1. List of Partitioned Materials

index
partitioned
materials

areas
represented

operating
unit type
producing
materiala

1 E E S
2 W W S
3 F F
4 T T S
5 L1 EYRQXE M
6 L2 YTRY M
7 L3 RTZHR M
8 L4 QHZWQ M
9 L5 QRHQ M
10 L6 XQWX M
11 L7.W XQ on the XQWX side S
12 L7.E XQ on the EYRQXE side S
13 L8.E YR on the EYRQXE side S
14 L8.T YR on the YTRY SIDE S
15 L9.T HZ on the RTZHR side S
16 L9.W HZ on the QHZWQ side S
17 L10.W QH on the QHZWQ side S
18 L10.E QH on the QRHQ side S
19 L11.T RH on the RTZHR side S
20 L11.W RT S
21 L12 line QW D
22 L13 line RT D
a D: decanter. M: mixer. S: separator.

∑
j)1

s

(M jc i
j ) ) ∑

k)1

t

(Mkci
k), i ) 1, 2, ..., n (1)

M ) (M1, M2, M3) (2)

Mi ) v1ci
1, i ) 1-3 (3)

v1 g 0 (4)

M ) (M1, M2, M3) (5)

Mi ) v1ci
1 + v2ci

2, i ) 1-3 (6)

v1 g 0; v2 g 0 (7)

M ) (M1, M2, M3) (8)

Mi ) ∑
j)1

m

v jc i
j, i ) 1-3; m g 3 (9)

v j g 0, j ) 1, 2, ..., m (10)
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rate, of component i in the partitioned material. Because
every v j is a free variable, a convex area in the RCM is
transformed into part of a convex volume in the corre-
sponding FRM.

By generalizing for the system with four or more
components, we obtain

Naturally, the FRM is a hyperspace for such a system.
Any partitioned material, at a point for which m ) 1,

on a straight line for which m ) 2, or in a convex area
for which m g 3, in the RCM of a three-component
system, i.e., n ) 3, is represented as a straight line,
part of a convex area, or part of a convex volume,
respectively, in the corresponding FRM. Similarly, any
partitioned material at a point for which m ) 1, on a
straight line for which m ) 2, in a convex area for
which m ) 3, in a convex volume with m ) 4, or in
a convex hyperspace with m g 5 in the RCM of a
four or more component system, i.e., n g 4, is repre-
sented as a straight line, part of a convex area, part of
a convex volume, part of a four-dimensional convex
hyperspace, or part of a convex hyperspace with five or
more dimensions, respectively, in the corresponding
FRM.

(b) Models of Operating Units. With the models
of partitioned materials in terms of the molar flow rates
of their respective components presented above, the
mathematical models of operating units can be derived.
To circumvent nonlinearity, these models are derived
in terms of molar balances. The derivation of the
equations except those for the mixers, however, needs

to rely on various thermodynamic information provided
by the corresponding RCM, e.g., distillation boundaries,
and liquid-liquid equilibrium envelopes.

A. Mixer. A mixer with two inputs and one output
can be represented on the FRM as

where I i
1, I i

2, and Oi are the molar flow rates of
component i in input material I1, input material I2, and
output material O, respectively.

B. Separator. For simplicity, it is assumed that any
separation leads to two products, each on a boundary
or bounding plane on the RCM. Naturally, any boundary
is either a distillation boundary or a natural boundary
which is one of the coordinates of the RCM, and any
bounding plane is determined by distillation boundaries
and/or natural boundaries. As a result, a separator can
be represented in the FRM as follows:

where Ii, Oi
1, and Oi

2 are the molar flow rates of
component i in input material I, output material O1, and
output material O2, respectively. The bounding bound-
ary or plane on the corresponding RCM containing
partitioned material O1 is determined by the k bounding
points, A1(c1

1,c2
1,...,cn

1) through Ak(c1
k,c2

k,...,cn
k), while the

bounding boundary or plane containing partitioned
material O2 is determined by the m - k bounding points,
Ak+1(c1

k+1,c2
k+1,...,cn

k+1) through Am(c1
m,c2

m,...,cn
m); see Fig-

ure 3. Note that obviously the sum of the concentrations
of any material Aj is equal to 1, i.e., ∑i)1

n c i
j ) 1, where

j ) 1, 2, ..., m.
C. Decanter. By definition, decanting yields two

products, each on the bounding boundary or plane
of the liquid-liquid equilibrium envelope in the RCM.
This envelope is sectionally linearized; see Figure 2.
Each segment of the sectionalized envelope can be part
of a convex area, convex volume, or convex hyperspace
in the corresponding FRM depending on the number
of components in the system, n. It is part of a convex
area for n ) 3; part of a convex volume for n ) 4; and
part of a convex hyperspace for n equal to or greater
than 5.

For clarity and simplicity, the model for a decanter
of the three-component system, producing pure ethanol
from its aqueous solution with toluene as the entrainer,
is established in the FRM first; see Figure 4. Note that
the corresponding RCM is defined by points E, W, and
T with straight lines EW, ET, and WT as its coordinates
as well as the boundaries in the figure. Consequently,

Figure 3. Representation of a separator in the RCM with input
I and outputs O1 and O2, which are on the bounding planes, A1A2A3
and A4A5A6A7, respectively.

M ) (M1, M2, ..., Mi, ..., Mn), n g 4 (11)

Mi ) ∑
j)1

m

v jc i
j, i ) 1, 2, ..., n (12)

v j g 0, j ) 1, 2, ..., m (13)

I i
1 + I i

2 ) Oi, i ) 1, 2, ..., n (14)

Ii ) Oi
1 + Oi

2, i ) 1, 2, ..., n (15)

Oi
1 ) ∑

j)1

k

v jc i
j, i ) 1, 2, ..., n (16)

Oi
2 ) ∑

j)k+1

m

v jc i
j, i ) 1, 2, ..., n (17)

v j g 0, j ) 1, 2, ..., m (18)
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the decanter for the three-component system can be
represented in the FRM as follows:

In the above expressions, Ii, Oi
1, and Oi

2 are the molar
flow rates of component i in input material I, output
material O1, and output material O2, respectively.

For a system with four or more components, the
bounding boundary or plane on the RCM containing
partitioned material O1 is determined by the k bounding
points, A1(c1

1,c2
1,...,cn

1) through Ak(c1
k,c2

k,...,cn
k), while the

bounding boundary or plane containing partitioned
material O2 is determined by the m - k bounding points,
Ak+1(c1

k+1,c2
k+1,...,cn

k+1) through Am(c1
m,c2

m,...,cn
m); see Fig-

ure 5. Note that obviously the sum of the concentrations
of any material Aj is equal to 1, i.e., ∑i)1

n c i
j ) 1, j ) 1,

2, ..., m. As a result, the governing equations for the
decanter in the FRM are

Identification of Plausible Operating Units and
the Pertinent Materials. The following constraints
are imposed in identifying candidate/plausible operating

units according to the methodology delineated in our
previous work.

1. Any distillation column yields two products from a
single feed, with each product being located at a singular
point, on a distillation boundary, or on a bounding
surface.

2. No materials in the same region are mixed.
3. No mixer yields any partitioned material occupying

a singular point, distillation boundary, liquid-liquid
equilibrium envelope, or bounding surface.

Constraint 1 represents rational simplification at the
conceptualization stage of process design, i.e., process
synthesis. Options such as complex columns with two
or more feeds and three or more products are better left
for consideration in the later stage of design. Moreover,
the nearer the products to the thermodynamic pinches,
the higher the degree of their separation achievable
through distillation, thereby lowering the cost provided
that the products are not exceedingly close to the
thermodynamic pinches. Constraint 2 is valid: The
partitioned materials are bounded by distillation bound-
aries and/or liquid-liquid equilibrium envelopes, and
thus the materials in the same region are identical from
the standpoint of serving as the feed to an operating
unit; no advantage is gained from blending the identical
materials. Constraint 3 is also valid: Although possible,
it is impractical to generate a partitioned material
occupying a singular point, a distillation boundary, or
a bounding surface because it is extremely difficult, if
not impossible, to control the operation of the mixer so
that the blended product is exactly at such geometrically
singular locations.

In addition to the first three constraints, the following
constraints are imposed specifically in the illustration
of producing pure ethanol (E) from its aqueous solution
to further simplify the problem.

4. The product from any mixer is not fed to any other
mixers.

5. Only two materials are fed to a mixer.
6. A desired product is not mixed with any other

materials.
Constraint 4 is logical: Mixing leads to an increase

in entropy or dissipation of available energy; the larger
the number of repetitions of mixing, the greater the loss
of available energy. Moreover, any resultant gain from
repetitive mixing tends to be nullified by accompanying
mechanical and operational complications. Constraints
5 and 6 may be regarded as reasonable simplifications.
Note that these three additional constraints can be
relaxed; in fact, it may be advantageous to relax one or
more of them. For instance, three-stream mixing and
mixing a desired product with one or more intermediate
materials have been practiced to generate a series of
innovative and superior flowsheets for purifying di-
ethoxymethane from a mixture with ethanol and wa-
ter.17

(a) Indispensable Operating Units. The operating
units necessary for producing the desired products need
be identified at the outset. Generally, the products and
feed for any distillation column should be in the same
region created by distillation boundaries. When the
extreme curvature of a distillation boundary is ex-
ploited, however, the products and feed can be in
different regions, i.e., one on either side of this bound-
ary. Nevertheless, in this situation, the effectiveness of
the design and operation of the identified operating unit
depends strongly on the reliability of thermodynamic

Figure 4. of the ethanol (E)-water (W)-toluene (T) system for
illustrating the derivation of the governing equations for decanter
I ) O1 + O2: lines SE, SW, and ST are the coordinates of the
FRM, and EW, ET, and WT are the coordinates and boundaries
of the RCM.

Ii ) Oi
1 + Oi

2, i ) 1-3 (19)

Oi
1 ) ∑

j)1

2

vjc i
j, i ) 1-3 (20)

Oi
2 ) ∑

j)3

4

vjc i
j, i ) 1-3 (21)

Ii ) Oi
1 + Oi

2, i ) 1, 2, ..., n (22)

Oi
1 ) ∑

j)1

k

v jc i
j, i ) 1, 2, ..., n (23)

Oi
2 ) ∑

j)k+1

m

vjc i
j, i ) 1, 2, ..., n (24)
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data; often, these data contain appreciable error. It is,
therefore, advisable to avoid the situation because such
an error may make the design and operation impossible
or extremely difficult. The operating units producing the
desired products can be identified by examining the
topology of the RCM of the corresponding system.18-20

In the example illustrated in Figure 2, the two
products, ethanol (E) and water (W), are situated
in regions EYRHQXE and XQHZWX, respectively.
Because each of these regions contains a portion of
the heterogeneous region, phase splitting by decanting
or other similar mechanical means, such as liquid-
liquid centrifugation, appears to be viable to circum-
vent distillation boundaries XH, YH, and ZH linking
the terminal points, i.e., azeotropes X, Y, Z, and H.
Probably, there is no need to exploit the appreciable
curvature of distillation boundaries XH and YH.
Hence, both the feed to and the intermediate product
from any operating unit yielding product E must be
located in region EYRHQXE. Similarly, both the feed
to and the intermediate products from any operating
unit producing water (W) must be situated in region
XQHZWX. These indispensable operating units are
identified below in terms of the partitioned materials
indicated in Figure 2.

According to the topology of the RCM, the plaus-
ible operating units for producing ethanol (E) are
distillation columns ({L1}, {E, L7.E}); ({L1}, {E, L8.E});
({L1}, {E, L10.E}); and ({L1}, {E, L11.E}). Note that, in
contrast with the methodology delineated in our previ-
ous work for identifying plausible operating units and
materials,1 material L1 is not further partitioned into
subpartitioned materials according to the uniqueness
of the intermediate products from the separation of L1,
i.e., L7.E, L8.E, L10.E, and L11.E. Similarly, the plaus-
ible operating units for producing water (W) are distil-
lation columns ({F}, {W, L7.W}); ({L6}, {W, L7.W}); ({L4},
{W, L9.W}); ({L4}, {W, L10.W}); ({L12}, {W, L7.W}); and
({L12}, {W, L10.W}).

To elude thermodynamic pinches, another class of
operating units is indispensable. As mentioned earlier,
these operating units in terms of the partitioned ma-
terials for the system can be identified in Figure 2. They
include decanters ({L3}, {L12, L13}); ({L4}, {L12, L13});
({L5}, {L12, L13}); ({L9.W}, {L12, L13}); ({L9.T}, {L12, L13});
({L10.E}, {L12, L13}); ({L10.W}, {L12, L13}); ({L11.E}, {L12,
L13}); and ({L11.T}, {L12, L13}).

Similarly, a separator is effective for eluding the
thermodynamic pinch when the separation is performed
in a space with at least one more dimension than the
space in which the thermodynamic pinch is located; in
fact, it is indispensable. Because such a separator does
not exist in the system illustrated in Figure 2, this is
demonstrated with a simple system in Figure 6 where
binary azeotrope X can be eluded with separators ({L2},
{A, L3}), ({L2}, {B, L1}), and ({L2}, { L1, L3}). Note that
azeotrope X is located on the one-dimensional line, AB,
while the three separations identified are performed in
the two-dimensional area encircled by points A-C.

(b) Operating Units for Generating the Feeds to
the Indispensable Operating Units. The feed to and
the products from a distillation column must be in the
same region created by distillation boundaries. Any
material located in a region containing a desired prod-
uct, therefore, can be fed into the corresponding indis-
pensable operating unit, yielding the desired product.
Naturally, the raw material or any intermediate mate-

rial from an indispensable operating unit can be such a
feed provided that it is located in a region of the RCM
containing one of the desired products.

In the example illustrated in Figure 2, the feeds to
the indispensable operating units selected are L1, L4,
L5, L6, L12, L9.W, L9.T, L10.E, L10.W, L11.E, and L11.T.
Obviously, partitioned materials L9.W, L9.T, L10.E, L10.W,
L11.E, and L11.T can be generated by the pertinent
separators producing pure materials E, W, and T;
partitioned material L12 can be produced by the decant-
ers already identified; partitioned materials L1, L4, L5,
and L6 need to be generated by mixers because each of

Figure 5. Representation of a decanter in the RCM with input I
and outputs O1 and O2, which are on the bounding planes,
A1A2A3A4 and A5A6A7A8, of the corresponding liquid-liquid equi-
librium envelope, respectively.

Figure 6. Simple system illustrating the identification of separa-
tors for eluding the thermodynamic pinches: A and B, desired
products; F, feed; X, binary azeotrope of A and B; L1, lumped
material occupying line AC; L2, lumped material occupying area
ABC; L3, lumped material occupying line BC; L4, lumped material
occupying line AX; L5, lumped material occupying line XB.
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these partitioned materials occupies a convex area.
Consequently, all of these partitioned materials can be
represented by eqs 8-10.

Constraints 4-6 are intended for mixers in general.
Naturally, it should be applicable to any mixer prepar-
ing the feed to an indispensable operating unit. By
taking into account constraints 4-6, the candidate feeds
to the plausible mixers in the example illustrated in
Figure 2 are F, T, L7.E, L7.W, L8.E, L8.T, L9.W, L9.T, L10.E,
L10.W, L11.E, L11.T, L12, and L13. The intermediate materi-
als resulting from mixing are partitioned materials, L1,
L3, L4, L5, and L6.

The mixers for generating the feeds to the indispen-
sable operating units are algorithmically generated by
exhaustively assessing the possible product from mixing
every pair of the candidate feeds identified. Mathemati-
cally, a mixer is feasible if there is a solution for the
series of equations including mathematical models of
the two feeds and the product as well as the governing
equations of the mixer. In what follows, the methodology
for algorithmically assessing the feasibility of a plausible
mixer is illustrated through the generation of mixer
({L7.W, L13}, {L1}).

Partitioned material L7.W occupies the straight line,
XQ, linking points X and Q. According to eqs 5-7, this
partitioned material can be represented as

where vX and vQ are the total molar flow rates of
materials X and Q, respectively; cXi and cQi, the con-
centrations of component i in materials X and Q,
respectively; and L(7.W)i, the molar flow rate of compo-
nent i in the partitioned material. Similarly, partitioned
material L13 occupies the straight line, RT, linking
points R and T, and can be represented as

Partitioned material L1 occupies the concave area
EYRQXE encircled by a series of straight lines connect-
ing points E, Y, R, Q, and X. According to eqs 8-10,
this partitioned material L1 can be represented as

The overall molar balance around the mixer yields

The feasibility of mixer ({L7.W, L13}, {L1}) is ascertained
by the existence of a solution from simultaneously
solving eqs 25-34.

(c) Other Operating Units Facilitating Separa-
tion. Usually, the pure entrainers are recycled in a

feasible flowsheet. Thus, any separator regenerating the
pure entrainers should be selected. Consequently, any
operating units producing the feed to separators regen-
erating the pure entrainers should also be selected. In
the example illustrated in Figure 2, the operating units,
separators, regenerating the entrainer, T, are ({L2},
{L8.T, T}); ({L3}, {L9.T, T}); ({L3}, {L8,T, T}), ({L13}; {L8.T,
T}); and ({L13}, {L8.T, T}). L13 can be produced by
decanters ({L3}, {L12, L13}); ({L4}, {L12, L13}); ({L5}, {L12,
L13}); ({L9.T}, {L12, L13}); ({L9.W}, {L12, L13}); ({L10.E},
{L12, L13}); ({L10.W}, {L12, L13}); ({L11.E}, {L12, L13}); and
({L11.T}, {L12, L13}); L2. Moreover, L3 can be produced
by the corresponding mixers that can be readily identi-
fied by the aforementioned method.

Generation of Feasible and Optimal Flowsheets.
The maximal structure is generated by resorting to
algorithm MSG, with the operating units identified in
the preceding subsection as the inputs. Subsequently,
algorithm SSG yields all combinatorially feasible struc-
tures, i.e., flowsheets, from the maximal structure.

Combinatorially feasible structures or flowsheets,
however, may often turn out to be infeasible. This is
especially the case for a system containing a relatively
large number of operating units. These operating units
should be excluded from further consideration.

The causes that render a combinatorially feasible
flowsheet infeasible are the following.

1. Generating one or more byproducts, i.e., product
not included in the designated product set, e.g., any
product which is neither ethanol (E) nor water (W) in
the example of producing pure ethanol from its aqueous
solution.

2. Not satisfying mass balance around at least one
cycle in the flowsheet.

The infeasibility due to the first one can be readily
remedied in the P-graph method: those generating
byproducts are simply eliminated by assessing every
product generated. As to the second one, the infeasibility
is addressed by imposing the pertinent mass balance
equations for every cycle as constraints in the optimiza-
tion; this will be delineated later.

Upon elimination of the structures generating byprod-
ucts, the remainder of the combinatorially feasible
structures can be optimized individually by formulating
the following optimization problem.

subject to the following four categories of constraints:
(1) the equations representing each material in the
structure, i.e., eqs 11-13; (2) the governing equation
for each mixer in the structure, i.e., eq 14; (3) the
governing equations for each separator in the structure,
i.e., eqs 15-18; and (4) the governing equations for each
decanter in the structure, i.e., eqs 22-24. Note that
governing equations for the operating units tacitly
require that the mass balance around each cycle in the
structure must be satisfied. In eq 35, C stands for the
total cost of the structure; i, i ) 1, 2, ..., op, the index
for the operating units in the structure, whose total

L(7.W) ) (L(7.W)1, L(7.W)2, L(7.W)3) (25)

L(7.W)i ) vXcXi + vQcQi, i ) 1-3 (26)

vX g 0, vQ g 0 (27)

L13 ) (L (13)1, L(13)2, L(13)3) (28)

L(13)i ) vRcRi + vTcTi, i ) 1-3 (29)

vR g 0, vT g 0 (30)

L1 ) (L(1)1, L(1)2, L(1)3) (31)

L(1)i ) vEcEi + vYcYi + vRcRi + vQcQi + vXcXi, i ) 1-3
(32)

vE g 0, vY g 0, vR g 0, vQ g 0, vX g 0 (33)

L(7.W)i + L(13)i ) L(1)i, i ) 1-3 (34)

Minimize

C ) ∑
i)1

op

costi(F11
IN,i, F12

IN,i, ..., F1n
IN,i; F21

IN,i, F22
IN,i, ...,

F2n
IN,i; ..., F11

OUT,i, F12
OUT,i, ..., F1n

OUT,i; F21
OUT,i,

F22
OUT,i,..., F2n

OUT,i; ...) (35)
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number is op; costi, the cost of operating unit i; F jk
IN,i,

the flow rate of component k in input or feed stream j
to operating unit i; and F jk

OUT,i, the molar flow rate of
component k in output stream j from operating unit i.
Note that the constraints in categories 2-4 prevent the
structures, in which at least one cycle violates mass
balance, from further consideration in the optimization.

Equation 35 can be either linear or nonlinear while
all of the constraints are linear. Naturally, the linearity
of the constraints drastically reduces the computational
complexities involved in optimization. For simplicity, all
costi’s are regarded as linear in Fij’s, thereby giving rise
to a LP problem, which is solvable by any effective LP
algorithm.

Application. Hitherto, the various facets of the
current method have been separately illustrated with
the well-established example of producing pure ethanol
from its aqueous solution via azeotropic distillation with
toluene as the entrainer. Herein, the method is il-
lustrated in totality with the same example; recall that
the RCM of the system is depicted in Figure 1. As an
initial screening, the cost function in eq 35 is taken as
the sum of the molar flow rates of the input or feed
streams to all separators, which signify their capaci-
ties: the cost of a decanter or mixer is negligible
compared to that of a separator. Consequently, eq 35 is
simplified as

where Sj
IN,i denotes the molar flow rate of component j

in the input or feed stream to separator i. Naturally,
Sj

IN,i ) F1j
IN,i if operating unit i is a separator; other-

wise, Sj
IN,i ) 0.

It has been found that any feasible structure resulting
from the final step comprises five or more operating
units. Our preliminary exploration, however, has indi-
cated that any structure with an exceedingly large
number of operating units is highly unlikely to be
optimal; thus, the upper bound of the total number of
operating units in each structure is considered to be
seven. In addition, it is assumed for simplicity that the
feed or each intermediate material can be consumed
only by a single operating unit, while each product or
intermediate material can also be produced only by a
single operating unit.

The method entails that the synthesis be carried out
according to the following procedure; see Figure 2. First,
the boundaries on the RCM are linearized. Second, the
entire domain of the RCM is divided into a set of
partitioned materials. Third, all plausible operating
units, including 13 separators, 6 decanters, and 256
mixers are identified according to the procedure de-
picted in the Identification of Plausible Operating Units
and the Pertinent Materials section. Fourth, the math-
ematical models, i.e., governing equations, of these
operating units are derived systematically and algo-
rithmically according to the governing equations of the
operating units presented in the Mathematical Modeling
of Operating Units section. Fifth, the maximal structure
is generated via algorithm MSG. Sixth, all of the
combinatorially feasible structures with seven or fewer
operating units are generated from the maximal struc-
ture via algorithm SSG; the limitation on the number
of operating units is imposed to drastically reduce the

computational time. Seventh, any cominatorially fea-
sible structure generating byproducts, i.e., the products
other than pure ethanol (E) and water (W), is discarded.
Finally, the cost of each of the structures surviving the
elimination, numbering 3789 in total, is minimized with
respect to the molar flow rates of each component in
the feeds to and the products from every operating unit,
i.e., the design variables, in light of eq 36 by linear
programming subject to mass balance constraints. Only
six structures turn out to satisfy these constraints. They
are structures 2294, 2645, 2649, 2684, 2721, and 2732.
The results are summarized and ranked in Table 2;
obviously, structures 2684 and 2721 are identical and
optimal, while structures 2645, 2649, and 2732 are
suboptimal. Figure 7 exhibits the optimal structure, i.e.,
flowsheet, corresponding to structures 2684 and 2721
in the RCM; Figure 8 shows the same structure as a
P-graph. The synthesis, executed on a PC (Celeron 366
MHz), has consumed a total of 4 min and 2 s.

C ) ∑
i)1

op

(∑
j)1

n

Sj
IN,i) (36)

Figure 7. Structures 2684 and 2721, which are feasible as well
as optimal, represented on the RCM.

Figure 8. Structures 2684 and 2721, which are feasible and
optimal, represented by a P-graph.

Table 2. List of Feasible Structures

no. cost

total number of
operating units
in the structure ranking

2294 1628.672 7 3
2645 200.631 7 2
2649 200.631 7 2
2684 172.743 5 1
2721 172.743 5 1
2732 200.631 7 2
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Discussion

It is well known that the major and often insurmount-
able difficulty encountered in process synthesis is its
profound combinatorial complexity. For example, to
synthesize a system with n plausible operating units, a
conventional MINLP approach needs to search a space
comprising 2n - 1 possible combinations or structures;
by any measure, this number is huge whenever n is
relatively large. For instance, it is 2275 - 1 ) 6.07 ×
1082 in the example of the current work for producing
ethanol from its aqueous solution where 13 separators,
6 decanters, and 256 mixers are identified to be plau-
sible. Naturally, even a severalfold improvement in the
efficiency of the conventional MINLP approach would
do little in circumventing the combinatorial complexity
of this magnitude. Moreover, any enhancement in the
approach would prematurely exclude the optimal and
even near-optimal structures if not done rigorously.20,21

In contrast, the proposed method is combinatorially
highly efficient and robust: Both algorithms MSG and
SSG are based on the five axioms generated by math-
ematically and rigorously distilling the unique struc-
tural features of the process systems. In fact, algorithm
MSG is a polynomial algorithm which eliminates with
dispatch all of the combinatorially infeasible operating
units and their concomitant linkages.13 For the example
of the current work, algorithm MSG composes the
maximal structure in approximately n(n + 1)/2 ) 275-
(275 + 1)/2 ) 37 950 steps. Although not polynomial,
algorithm SSG is far more efficient than a typical all-
purpose algorithm, e.g., MINLP. The solution structures
are generated from the maximal structure containing
only the combinatorially feasible networks whose num-
ber tends to be a minute fraction of the total number of
possible networks when n is not exceedingly small;
moreover, the implementation of algorithm SSG is
facilitated by a unique mathematical function, termed
decision mapping, conceived by exploiting the unique
features of a process network expressed in the five
axioms.15 Consequently, the entire synthesis of the
example system of the current work has consumed only
4 min and 2 s on a PC (Celeron 366 MHz), thereby
demonstrating the efficacy of the proposed method. The
algorithm is implemented by incorporating LINX, a
simplex-based routine collection written in C++, as the
LP solver.22

The proposed method is capable of rapidly screening
a large number of potentially feasible structures, elimi-
nating the infeasible ones, and ranking the feasible
ones. In practice, this prevents the search involved from
being trapped at a locally optimal solution. The real
optimal structure can be identified by comparing the
ranked optimal and near-optimal structures, as given
in Table 2 for the example, through detailed simulation
via a commercial simulator. The ranking of the optimal
and near-optimal structures also renders it possible to
replace immediately the optimal with the next best
when the former is deemed undesirable from the
standpoint of its stability and controllability or in view
of environmental, societal, regulatory, and other perti-
nent constraints. This replacement can be repeated as
needed.

Conclusions

A highly efficient and robust method has been estab-
lished for algorithmically synthesizing optimal as well

as near-optimal flowsheets of an azeotropic-distillation
system. This has been rendered possible by resorting
to the methodology of classifying the entire space of a
RCM into partitioned materials, thus preventing the
localization of search; by judiciously adapting the graph-
theoretic algorithmic approach to process-network syn-
thesis based on P-graphs, thus circumventing the
enormous combinatorial complexities; and by introduc-
ing the notion of the FRM to complement the RCM, thus
eliminating the nonlinearity of the governing equations
of operating units to be incorporated into the system.
The proposed method should be applicable to other
complex processes with phase transition and/or separa-
tion, e.g., crystallization, extraction, reactive distillation,
and their combinations.
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