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ABSTRACT

The previously developed method for integrated process and control system (IPCS) synthesis (Hangos et
al., 1994) has been extended to the cases for which process safety or reliability is of primary concern. An
unambiguous representation of the resultant integrated process and fault-tolerant control system structure,
IPFCS structure in brief, is rendered possible through the CP-graph originally proposed for IPCS
synthesis. A new axiom for the fault-tolerant controllability is established; it states that more than one
independent control path are required for each controlled variable. The fundamental combinatorial
algorithm of IPCS synthesis, i.c., algorithm CMSG, has been revised so that the modified set of axioms is
capable of identifying the controllable, fault-tolerant structures of an IPFCS synthesis problem. The
efficacy of the proposed method for IPFCS synthesis method is demonstrated with a relatively simple
example by systematically varying the level of the fault tolerance.
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INTRODUCTION

An important and yet extremely difficult task confronting the process-control community is to establish a
fully integrated methodology for performing simultaneous syntheses of processes and their control systems
essentially from the outset of process design. In recent years, the foundation of a graph-theoretic approach
to process synthesis has been well established (Friedler ef al., 1993); meanwhile, the structural
controllability of a process has been successfully analyzed on the basis of digraph-type process models
(Reinschke, 1988). Collectively, these two developments have given rise to a graph-theoretic method for
integrated process and control system (IPCS) synthesis (Hangos ef al., 1994). A set of axioms is obtained
for describing the combinatorially feasible and controllable structures by resorting to the notion of CP-
graph. The maximal controllable structure of an IPCS synthesis problem has been defined as the union of
combinatorially feasible and controllable IPCS structures containing the optimal IPCS structure.

For an increasing number of processes, safcty in general and fault-tolerance in particular are of utmost
concern. For such processes, the integration of fault-tolerance requirements into the early stages of
process design, i.e., in the phase of process synthesis, is of great importance. Thus, our method for IPCS
synthesis is extended to construct the present method for integrated process and fault-tolerant control
system (IPFCS) synthesis.
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STRUCTURE REPRESENTATION

The major concepts and terminologies of IPFCS synthesis, analogous to those of IPCS synthesis of
Hangos ef al. (1994), are given in this section. For this purpose, let M and 4 be two disjoint finite sets
where T is the set of materials and A is the set of actuators.

Definition 1. Operating unit oj on set M of materials and set 4 of actuators is defined to be the quintuple, o;
= (a4, B, ¥i» Fis mp), where o is the set of input materials (o;;cM); B;, the set of output materials (B;c™);
¥j» the set of possible actuators; F;, the performance function of the operating unit; and =, the set of
additional parameters, €.g., the costs. Note that the domain of Fj, dom(F}), is a subset of ajry;, and the
range of Fj is a subset of the power set of B;; thus, Fic(a;uy)x(#(8)). If Fij(x) = m for some xea;, i.e.,
mcf;, then a change in material x effects a change in each element of m but not in any element of ;\m.
Similarly, if Fj(a) = m' for some aey;, i.e., m'cP;, then actuator a may induce changes in each element of
m', but not in any element of ;\m".

Suppose that 0 is a set of operating units on sets M and 4. Let us now define mappings \yi, O, and w2 on
the set of operating units as \V‘(Oj) =ay, WO(Oj) = Bj, and \ya(oJ') =Y for operating unit 0 = (aj, [3j, ¥ IG,
nJ') € 0. Mappings y!, wO, and @ are called the input, output, and actuator selectors of the operating

units, respectively. Let us define similarly the input, output, and actuator selectors of a subset of the set of
operating units by

F(E)= U V() PO)= Uuvo) ¥()= U v,
respectively, where §'c6.

Definition 2. Triplet (W, &', 8') defines a CP-graph on sets M, 4, and ¢ if W< and A'CA are a finite set of
materials and that of actuators, respectively. It is supposed that 0'c8 is a set of operating units on sets M
and «', ie., Wi(Oj), \yo(o_i)gTH' for each Oje(‘)‘; moreover, A'cV(). CP-graph (W, 4, 8) has two
components, 1.€., structural component (', &', 0')5 and control component (', 4', @')C. The former, (M, 4,
(‘)')S, is a directed bipartite graph where the set of its vertices is M'U6', and the set of its arcs is
{(x,0)): 0je8' & xe\yi(oi)}u{(oi, x): 0;€8' & xeyO(op)}.
The latter, (M, 4', @')C, 1s a simple directed graph where the set of its vertices is M'\UA', and the set of its
arcs is
{(a, b): there is an o;€ 0 such that acdom(F;)(M'uA') and be Fj(a)}.

Note that the structural component of CP-graph (7, ', 6') can be considered as P-graph (', §") (see, e.g.,

Friedler ef al., 1992). The set of actuators, the performance function, and the additional parameters are,
however, irrelevant for the P-graph. Vertices of CP-graph (', 4', 6') belonging to set 7' are the vertices of
the 7 type, and those belonging to set §' are the vertices of the § type.

Definition 3. The union of the two CP-graphs, (', &', §') and (M", 4", "), is defined to be (MUM", #'U4", @

UM"). CP-graph ("', 4, 0') is defined to be the subgraph of CP-graph (", 4", §") if MM", A4, and 6'C
0",

Definition 4. Sequence ay, ay, ..., and ay, is a structural path in CP-graph (W, 4', §") from a jtoayifitis
a path of its structural component; it is denoted by [aj, an]s. Similarly, sequence b, by, ..., and by, is a
control path in CP-graph (T, 4', §') from b to by, if it is a path of its control component; it is denoted by
(b1, bm]€.

For CP-graph (7, 4', ¢'), let us define function [ as a mapping from set &' to the set of natural numbers.

Here, function I is termed as the multiplicity function of the actuators of the CP-graph (or simply, multi-
plicity function); it expresses the actual multiplicity of each actuator represented in CP-graph (7, 4", 6").
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Definition 5. Quadruple (W, &, ¢, I') is called an fCP structure if (W, A', ¢') is a CP-graph, and I is a
corresponding multiplicity function,

Example 1. o and oy are operating units on set mi) = {A, B, C, D, E, F} of materials and set ) = {ay,
ay, a3} of actuators where 0] = ({A, B}, {C, D}, {a), a3}, (B,
{D}), (a}, {C, D}), (a2, {D})}, @) and 03 = ({D}, {E, F}, {a3},
{(D, {E, F}), (a3, {F})}, 9). Since F|(B) = {D}, a change in
material B effects a change in material D. A change in material B,
however, does not induce any change in the other output material of
operating unit o, i.e. C. Actuator a] of this operating unit may
induce a change both in materials C and D since Fi(aj) = {C, D}.
The multiplicity of actuators aj, ap, and a3 is 2, 1 and 2,
respectively. Therefore, ['(a1)=2, ['(ap)=1, and I'(a3)=2. Note that in
Fig. 1, an operating unit is represented by a horizontal bar, —; a

Fig. 1. fCP structure ({A, B, material by a circle, @; and an actuator by a square, [I. A number in
C,D,E,F}, {a], a3, a3}, this square is the value of multiplicity function I'. In this figure, the
{01, 02}, {(a}, 2), (a2, 1), material flows are denoted by solid arcs, and the control effects are

(a3, 2)} indicated by dashed arcs.

COMBINATORIALLY FEASIBLE AND FAULT-TOLERANTLY CONTROLLABLE
PROCESS STRUCTURES

In the IPCS synthesis, a structure considered to be controllable, if there is at least one control path to a
specific material represented in the structure [see axiom (SC1) in Hangos ef al., 1994]. To increase the
fault-tolerancy of a controllable structure, a minimum number of such paths is required for each of these
specific matertals. For this purpose, let us introduce parameter r termed the fault-tolerancy level. Let us
also introduce parameter r, which is the maximal multiplicity of any actuator. Thus, the maximal value of
the multiplicity function, I', must be less or equal to a, i.e., mg{( F'@<m.

a

Let A<M be the set of products and B be the sct of raw materials. Furthermore, let ¢ be a sct of
operating units on set 7 of materials and set 4 of actuators. Then, sextuple (7, &, 0, 4, r, ry) defines the
combinatorial part of an IPFCS synthesis problem provided that fg = &.

Axioms of combinatorially feasible structures. fCP structure (W, &', ¢, I") is a combinatorially feasible
structure of IPFCS synthesis problem (7, ®, 6, 4, r, ry) if (W, 4', ¢') is a CP-graph; moreover, it satisfies the
following axioms.
(S1) Every final product is represented in the graph, i.e., P
(S2) A vertex of the M-type has no input if and only if it represents a raw material, i.e., Vxe,
@i(x) = @ if and only if xe .
(S3) Every vertex of the 6-type represents an operating unit defined in the IPFCS synthesis problem,
ie., 0'co.
(54) Every vertex of the 8-type has at least one structural path leading to a vertex of the M-type
representing a final product, i.e., Vyge®', 3 path [y, yl]S where y .
(S5) If a vertex of the 7i-type belongs to the graph, it must be an input to or output from at least one
vertex of the §-type in the graph, i.e., Vxe, Joed' such that xe wi(o)uwo(o).

CACE 19:13-EE
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Axioms of structural fault-tolerant controllability. fCPstructure (W, f', ¢', I') satisfies the axioms of
structural fault-tolerant controllability for IPFCS synthesis problem (P, &, 0, A, 1, ry) if it satisfies the
following two axioms.

(SFC1) The multiplicity of any actuator is not greater than r,, i.e., max I"(a)<ra
aed’

(SFC2) There exists at least r different control paths to each material x€ ' such that x is a product
or is produced and also consumed by some operating units, i.e., Vxe(¥{(8)n¥O(8"))ur and

4'(x) = {aj:[aj,x]C is a control path}, ST(aj)=r.
ajed' (x)

Definition 6. Structure (W', &', ¢, I') is a combinatorially feasible and fault-tolerantly controllable
(CFFC) structure of IPFCS synthesis problem (£, &, 6, 4, r, ry) on M if it satisfies axioms (S1) through
(S5) and axioms (SFCI) and (SFC2).

Maximal fault-tolerantly controllable structure. In solving an IPFCS synthesis problem, the search for the
optimal structure can be confined to the set of CFFC structures. Hence, those and only those operating
units which are the members in at least one CFFC structure need be considered in developing a
mathematical model of the problem, €.g., a MINLP model.

Let S(, &, 6, 4, 1, ry) be the set of CFFC structures for IPFCS synthesis problem (7, &, 8, 4, r, ry);
moreover, let us suppose that S(#, &, 0, 4, 1, 1) # &.

Definition 7. The maximal fauit-tolerantly controllable structure of IPFCS synthesis problem (7, &, 0, 4,
1, Iy) is the union of all CP-graphs (7', A, §') for which there exists a multiplicity function I" such that the
structure (M, A', &, I') is a CFFC structure. The maximal fault-tolerantly controllable structure is denoted
by WP, &, 6, 4, 1, 15), e,

n(P,R,0,4,r,m)= Um,4,6%

(M A8 )eS(PR,0,4,r,m) )

Note that the maximal fault-tolerantly controllable structure is always a subgraph of the maximal structure
of the corresponding IPCS synthesis problem.

CASE STUDY

To compare the results of the integrated process and control system synthesis with those with different
fault-tolerant controllability considerations, Example 2 in Friedler ef al. (1993) is extended with actuators
and control paths as described in Hangos ef al. (1994).

Example 2. Actuators e.g., manipulable valves, are placed at operating units to which raw materials are
fed Moreover, let us assume that all output materials from an operating unit are controllable by any of the
?ut matenals of this operating unit. In this case a class of IPFCS synthesis problems can be given by
'T, 1) where
-)—{A B c D E,F,G,HLJ K L MN,QT,U,Vj @ =(B},el={F,HM,T},
() {a), a4, a5, ag, ag, a0},
o) = { ({C, D, F}, {A}, {ar}, {(C, {AD), (D, {A]), (F, {A}), (3], {A})}, @), ({D}, (B, G}, &, {(D,
{B.GH}, @), ({E}. {B, U}, @, {(E. {B, U})}, @), ({F, G}, {C, D}, {aq}, {(F, {C, D}), (G, {C, D}),
(ag, {C, DN}, @), ({G, H}, (D}, {as}, {(G, {D}), (H, {D}), a5, {DH)}, @), ({H, I}, {E}, {ag}, {(H,
{E}), (I, {E}), (ag, {E})}, @), ({], K}, {E}, D, {(J, {E}), (K, {E})}, @), ({M}, {G}, {ag}, {M, {G}),
(ag. {GH}, D), (N, Q}, {H}, &, {(N, {H}), (Q, {H}}, @), ({T, U}, {1}, {ajol. T, {I}), (U, {1),
(a10, {1H}, D), ((VE {1}, B, {(V, {IH}, D) }
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The following two tables summarize the CFFC structures for two related IPFCS synthesis problems (07(2),
03(2), 6(2), A(z), 2, 1) and (0’(2), (E(Z), 0(2), A(z), 3, 2). The CP-graphs of these CFFC structures are shown in
Fig. 2.; note that CP-graph 7 is the maximal fault-tolerantly controllable structure in both cases. The
multiplicity functions of the solution structures are also given in Tables 1 and 2, where "N/A" stands for
non-applicable, i.e. the actuator is not represented in the CP-graph. Obviously, several CFFC structures
are based on the same CP-graph (sce, e.g., CP-graph #3 in Table I).

Table 1. CFFC structures for (0’(2), 08(2), 0(2), 14(2)’ 2,1

# CP-graph r
# _ay ag ag ag ajg

1 1 1 N/A N/A 1 N/A
2 2 N/A 1 N/A 1 N/A
3 3 1 0 N/A 1 N/A
4 3 0 I N/A 1 N/A
5 3 1 1 N/A 0 N/A
6 3 1 1 N/A 1 N/A
7 4 N/A N/A 1 N/A 1

8 5 1 N/A 1 1 1

9 6 N/A 1 1 I 1
10 7 1 0 1 1 1
11 7 0 1 | 1 1
12 7 1 1 1 0 1
13 7 1 1 1 1 1

Note that CFFC structure #6 is also appropriate for IPFCS problem (0’(2), LP@), 0(2), :1(?-), 3, N

Table 2. CFFC structures for (0’(2), 02(2>, 0(2), A(z), 3,2)

# CP-graph r
# a4 as 3 ag a9
1 | 1 N/A N/A 2 N/A
2 1 2 N/A N/A 1 N/A
3 1 2 N/A N/A 2 N/A
94 7 2 2 2 2 1
95 7 2 2 2 2 2
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Fig. 2. CP-graphs of the IPFCS synthesis problems



