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Abstract:

Analyses of network problems have yielded mathematically and practically significant results.

Naturally, it should be of substantial interest to extend such results to a general class of network problems
where the structure of any system can be represented by a directed bipartite graph containing two types
of vertices; the model for one of them is nonlinear. This class of problems is frequently encountered in
the design of process systems for carrying out transformation of chemical or material species through
physical, chemical, or biological means. General-purpose mathematical programming methods have
failed so far to solve large-scale network problems involved in the design of such systems. This paper
is intended to define this class of network problems, i.e., the problems of process network synthesis,

and to elucidate the unique features of these problems.
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1. INTRODUCTION

In a process system, raw materials are consumed through
various chemical, physical, and biological transforma-
tions to yield desired products; this is usually accompa-
nied by the generation of wastes. Vessels in which these
transformations are carried out are termed operating units
of the process. A given set of operating units with the
plausible interconnections can be described by a network.
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The desired products can often be manufactured using
some subnetworks of this network. Thus, a given network
may give rise to a variety of processes producing the
desired products, and each of such processes corresponds
to a subnetwork which can be considered to be its struc-
ture. Since the waste generation and energy and raw mate-
rial consumption depend strongly on the selection of a
process structure, the optimal design of such a process
structure, i.e., the process network synthesis (PNS), has
both economical and environmental implications. Studies
of the network synthesis have given rise to significant
results of a practical nature as summarized in the recent
review article [4]. Nevertheless, these results are not di-
rectly applicable to PNS because of some of its unique
features. The most significant among them is that the
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Fig. 1. Digraph representation of the structure of Examples
1 and 2.

transformation effected by an operating unit is frequently
nonlinear; moreover, the optimal process structure may
contain loops.

Since the mixed integer-nonlinear programming
(MINLP) model of a PNS of a practical-size instance
often contains an exceedingly large number of binary
variables, the direct application of general mathematical
programming methods is extremely difficult, if not impos-
sible. Development of a method or methods exploiting
the combinatorial features of PNS may be the only re-
source for circumventing this dilemma.

Our purpose is to present the general mathematical
description and model of PNS. Since this model is often
unsolvable for practical problems, it is reduced on the
basis of the combinatorial properties of PNS.

2. A MINLP MODEL OF PNS

The simple directed graph is effective in representing
structures of general network problems (see, e.g., [3]);
however, it is unsuitable for PNS as demonstrated by the
following examples (refer to Fig. 1).

Example 1. Two different intermediate materials are pro-
duced separately, one by operating unit o, and the other
by operating unit 0;. Moreover, it is necessary to feed
both intermediate materials into operating unit o, to gen-
erate the final product.

Example 2. One material is produced by both operating
units o, and o;. This intermediate is subsequently fed into
operating unit o, to generate the final product.

Example 1 requires all three operating units to yield
the final product, whereas, in Example 2, either a pair
comprising operating units o, and o, or a pair comprising
operating units o0, and o; is sufficient to yield the final
product. Nevertheless, the structures of these two exam-
ples are represented by an identical digraph as illustrated

in Figure 1; the vertices correspond to the operating units
and the arcs correspond to their interconnections. Simi-
larly, representing materials by the vertices of a graph
and representing their production and consumption by
arcs do not define unambiguously the process structure.
Structure representation with enhanced sophistication is
required for PNS.

Process Graphs

Let M be a given set of objects, usually material species
or materials that can be transformed into the process under
consideration. Transformation between two subsets of M
occurs in an operating unit. This operating unit is required
to be linked to other operating units through the elements
of these two subsets of M. The resultant structure can be
described by a directed bipartite graph, termed a process
graph or P-graph in short, which alleviates the difficulty
encountered in representing a process structure by a con-
ventional graph.

Definition 1. Let M be a finite set, and let set O c P (M)
X P (M) with M N O = ), where P (M) denotes the
power set of M. The pair (M, O) is called a process
graph or P-graph; the set of vertices of this graph is M
U O, and the set of arcs is A = A; U A, with A; = {(X,
Y)|Y = (a, B) € Oand X € a} and A, = {(¥, X)|Y
= (a, B) € O and X € B}. P-graph (M', O') is defined
to be a subgraph of (M, 0), ie., (M', 0') = (M, O),
if M € M and O' € O. Let (M;, O0,) and (M,, O,) be
two subgraphs of (M, O). The union of (M,, O,) and
(M,, 0O,) is defined by P-graph (M, U M,, O, U 0,)
which is denoted by (M;, 0,) U (M,, O,). Obviously,
this union is a subgraph of (M, O). If (a, 8) is an element
of O, then set « is called the input-set of («, (), while
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Fig. 2. P-graph representation of the process structure: (a)
Example 1; (b) Example 2.
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TABLE |. Plausible operating units of the practical
example

No. Type Inputs Outputs
1 F1 Al AS
2 R1 A2, A3, A4 A9
R1 A3, A4, A6, All Al10
4 R1 A3, A4, AS Al12
5 R1 A3, A4, AS Al3
6 R1 A7, A8, Al4 Al6
R1 A8, Al4, A18 Al6
S1 A9, All A21, A22, A24
9 S1 A10, All A22, A24, A37
10 S1 Al2 A25, A26
11 S1 Al3 A25, A31
12 D2 Al5, Al6 A32
13 Rl Al4, Al17, Al18, A19, A20 A33
14 R1 A6, A21 A35
15 w1 A22, A23 A48
16 Wi AS, A24 A36
17 S1 AS, All, A25 A37, A38, A39
18 S1 All, A26 A40, A42
19 R1 Al4, A27, A28, A29, A30 A4l
20 S1 All, A31 A40, A42
21 Cl1 A32 A44, A45
22 w1 A33, A34 Ad6
23 S1 A36 Al4, A48
24 S1 A38 Al4, A48
25 F2 A4l A50, A51
26 Wi A43, A44 AS3
27 F2 A46 ASS5, A56
28 S1 A47, A48 AS, A57
29 S1 A48, A49 AS, AS8
30 S1 A50 A59, A60
31 D3 AS51, A54 A6l
32 D3 A52, A53 A61
33 D3 A54, ASS A61
34 D1 AS59 A62, A63
35 S1 A60 A64, A65

set 3 is called its output-set. The sets of arcs incident into,
out of, and to vertex X are denoted by w™(X), w*(X),
and w(X), respectively. The indegree, d~, and the outde-
gree, d*, of vertex X are defined by d~(X) = |w™(X)]
andd*(X) = |w*(X)]|. The degree of vertex X is defined
by d(X) = d (X) + d"(X). Since sets w™(X) and
w*(X) do not intersect for a P-graph, d(X) = |w(X)]|.

Figure 2 shows the two different P-graphs for the two
examples that have identical digraph representation.

Preparation of the Model

Let us consider a process design problem in which the
set of desired products is denoted by P; the set of raw

materials, by R; and the set of available operating units,
by O = {0y, 02, ..., 0,}. Moreover, let M = {m,, my,

., m; } be the set of the materials belonging to these
operating units, and assume that PN R = &J, Pc M,
RcM,and M N O = . Then, P-graph (M, O), termed
the network of the problem, contains the interconnections
among the units, 0,, 0,, ..., and o,. Furthermore, each
feasible process, producing the given set P of products
from the given set R of the raw materials using operating
units from O, corresponds to a subgraph of (M, 0), i.e.,
the structure of the process under consideration. For any
1 =j =n,lety = 1if o; is contained in this subgraph
and y; = 0 otherwise. Thus, this subgraph is determined
by the vector (¥1, Y2, -+ » Yn)-

Let us now investigate the constraints with respect to
the vertices and arcs of the network. For this purpose, let
A = {a;, as, ..., a,} be the set of the arcs and assign
to arc a, the continuous variable x, (k =1, 2, ..., r)
representing the quantity of either the material consumed
or the product produced. The function for which
o({ay, a, ..., a,}) = (X, Xi;» - . ., ;) holds for any
subset {a;, a;,, ..., a,} of A is denoted by . Finally,
variable z; is assigned to operating unito; (j = 1,2, ...,
n) for identification.

Operating unit o, is linked to the system through inter-
connections represented by its arcs contained in w(o;).
Especially, w~(0;) includes the incoming arcs to vertex
o;, and w " (0;) includes the outgoing arcs from vertex o;.
It follows that besides depending on y; and z; the constraint
and cost of o; depend only on the variables belonging to
these arcs, i.e., on p(w (0;)) U @(w(0;)). Conse-
quently, the constraints on the cost of operating unit o;
can be expressed, respectively, by

&y, p(w™(0)), p(w (o)), z) =0, j=12,
£ o(w™ (o)), p(w*(0)), )y j=1,2,

where for a fixed value of y; both f; and g; are nonlinear,
differentiable functions on the practically interesting do-
main forj=1,2,...,n.

Similarly, the constraint on and cost function of vertex
m; can be given, respectively, as follows:

gj,(‘p(w_(mx))’ So(w+(ml))) = 0» J = 1’ 2’ I

and

fllp(w™(m)), p(wr(m))), j=12,. ,L

In practice, g’ and f' are usually linear; the former
represents the material balances and specifications of the
products, e.g., quantity and quality, and the latter, the cost
of raw materials.
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Fig. 3. Maximal structure of the practical example.

Process Network Synthesis Problem

Suppose that the nonempty finite set M = {m,, m,, ...,
m, } and triplet (P, R, O) are given, where P, R, and O
are nonempty finite sets and O = {0y, 0, ..., 0,}. Also,
suppose that PN R = J, PcM,RcM, O c ?P(M)
X P(M),andM = U (a U ). Then, the problem

(a,8)€E0
is to find

s pw (), p(w'(0)), )

j€{1.2,.n}

+ X file(wm(m)), p(w*(m)))}

ie{1,2,..1}

subject to

& (¥, p(w™(0)), p(w*(0)), z) =0,

» (1)
j=1,2...,n
gl (p(w™(m)), p(w*(m;))) = 0,
1,2, .,1
y, €{0,1},z =0,
j=12, , 1

3. A REDUCED MODEL OF PNS

One subgraph of (M, O) corresponds to each feasible
solution of (1), the model of PNS. This subgraph is deter-

mined by vector (i, ¥z, - . ., Ya), and it forms the struc-
ture of a process satisfying each constraint in (1), i.e., it
is the structure of a feasible process or it is a feasible
process structure. Obviously, not any vector (y1, y2, . - .,
Y., (v € {0,1},i =1, 2,..., n) defines a feasible
process structure in general. However, the feasible pro-
cess structures have some common combinatorial proper-
ties [1] that have been expressed implicitly in model (1).
Since each feasible process structure must have these
combinatorial properties, the set of subgraphs of (M, O),
considered in solving model (1), can be reduced to the
set of combinatorially feasible process structures or to the
set of solution-structures in short.

Definition 2. Subgraph (M', O') of (M, O) is called a
solution-structure of PNS if

(S1) P ¢ M’, i.e, every final product is represented in
graph (M', 0');

(S2) Vxe M',d (x) =0iff x € R, i.e., a vertex from
M’ has no input if and only if it represents a raw
material;

(S3) Vu € O', 3 path [u,v] in (M', O'), where v € P,
i.e., every vertex from O’ has at least one path leading
to a vertex representing a final product; and

(S4) Vx € M’, 3(a, B) € O’ such that x € (a U B),
i.e., any vertex from M’ must be an input to or
output from at least one vertex from O’.
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The set of solution-structures is denoted by S(P, R,
0); its important properties are expressed by the follow-
ing theorem, lemma, and corollaries.

Theorem. S(P, R, O) is closed under union.

Proof Let gy = (M], 0)) S S(P, R, O), g, = (Mz,
0,)€S(P,R,0),ando =0,U o0, =(M',0"). Hence,
M' =M, UM, and O’ = 0, U O,. It must be proved
that conditions (S1)—(S4) are satisfied by o:

(S1) Pc M',since Pc M, and P c M,.
(S2) Let us define the following sets:

IfxeM',O0={(a B)|(a, B) €O and x € B},
if x € My, O} = {(a, B)|(a, B) € O, and x
€ (A}, and

if x € My, 0, = {(a, B)|(, B) € O} and x
€ B}.

(i) Suppose that x € M’ and x € R.

(a) If x ¢ M,, then O = O}; thus, d; (x) = |O|
= 07| = ds(x) = 0.

(b) Similarly, if x ¢ M,, then d;(x) = 0.

(¢) f x € M; N M,, then O = O] U 0O}; thus,
d;(x) = 10| = |0 U 03| = |O7]
+ |04] = 0. From (a), (b), and (c), d; (x)
=0ifx € M’ and x € R.

(ii) Conversely, let x € M’ and d; (x) = 0. Then,

Al A47

Al4 Al17 Al18 Al9 A20

A3 A A33 | A34
\‘ |

5 —t 22
A3 @ Ad6 @

— 27
Asj As4
)

A31 A25

A48

Fig. 4. Solution-structure for the practical example.

(a) If x € M,, then O 2 O}; thus, 0 = d;(x)
=d;(x) = d;(x)=0=x€R.
(b) Similarly, if x € M,, then x € R.

From (a) and (b), we have x € R, if x € M’
and d, (x) = 0.

(83) (M, U M,, O, U 0,) contains all paths of (M,
0,) and (M,, 05).

(S4) This is implied by the next lemma. |
Lemma. If (M', 0') € S(P, R, O), then M’
= U (aUBpB).

(a,B)€0’

Proof. Since (M', O') is a P-graph, O’ ¢ P(M’)
X P(M') and

M’ = Uu  (aup)=2 U (a,p)
(a,B)EPM'Y)XPM') (a,B)EO’
Moreover, (S4) gives rise to
Mc o (aUpB) [ |
(a,8)€0’

The simple consequence of this lemma is the following
corollary:

Corollary 1. Let (M', O') € S(P, R, O); then, (M’',
0') is uniquely determined if set O’ is given. ]

The maximal structure of PNS, defined below, plays
an essential role:

Definition 3. Let us assume that S(P, R, O) # (J; then,
the union of all solution-structures of PNS, denoted by
w(P, R, 0), is defined to be its maximal structure, i.e.,

wP,R,0) = U o.

c€S(PR,0)

Since the set of solution-structures is finite and closed
under the union, the maximal structure also is a solution-
structure; this leads to the following corollary:

Corollary 2. u(P, R, O) € S(P, R, O).

Obviously, any operating unit not included in the maxi-
mal structure should not be considered for the optimal
solution. Since any optimal solution is a solution-structure,
the MINLP model of PNS can be based on the maximal
structure. For this reason, let us suppose that S(P, R, O)
# () and let the maximal structure, u(P, R, O), be de-
noted by (M, O), and the set of the arcs of M, 0), by
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A. Furthermore, let the restriction of w, w ™, and w* with
respect to the set M U O be denoted by &, &, and &7,
respectively. Then, &(o;) = w(o;) and &(m;) € w(m,) are
valid for any m; € M and 0; € 0. In addition, let us
constitute the following sets:

I = {i;]sislandmiEM},
J={j:1lsj=nando, € M}.

Now, for any i € I, let us derive the functions, F/ and
G!, from f ! and g/, respectively, by assigning the value
of zero to the variables belonging to the arcs from
w(m;)\@(m;). Then, we obtain the reduced model of
PNS given below:

min{ ¥, fi(y;, p(w™(0)), p(w*(0))), )

j€J
+ 2 Fl(p(&~(m)), o(& (m;)))}

iel

subject to

? (2
g (i, p(w™(0)), p(w*(0))), ) =0, jeEJ @

Gi(p(@~(m;)), p(&"(m))) = 0, iel

yj€{091}$2j209 JEJ.

4. PRACTICAL EXAMPLE

The combinatorial part of an industrial instance of PNS
is given here. For producing material A61, experimental
investigations have given rise to a set of plausible op-
erating units and the set of raw materials. We have set
M = {Al, A2, ..., A65} as the set of materials, and R
= {Al, A2, A3, A4, A6, A7, A8, All, Al5, Al7, AlS,
A19, A20, A23, A27, A28, A29, A30, A34, A43, Ad47,
A49, A52, A54} as the set of raw materials; set O of
plausible operating units is listed in Table I. The maximal

structure of this instance is a proper subgraph of (M, O);
operating units 14, 18, 30, 34, and 35, and the correspond-
ing materials do not belong to this maximal structure.
The maximal structure in Figure 3 was determined by
Algorithm MSG [2]. One of the 3465 different solution-
structures is illustrated in Figure 4.

5. CONCLUDING REMARKS

A special class of network synthesis problems, the process
network synthesis (PNS), has been defined. This class
of problems is frequently found in designing industrial
systems. The essential properties of the feasible structures
of PNS have been summarized, and a MINLP model and
a reduced MINLP model for PNS have been developed.
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