

Available online at www.sciencedirect.com

Surface Science 601 (2007) 2401-2405

Discussion

SURFACE SCIENCE

www.elsevier.com/locate/susc

Comment on: An improved microkinetic model for the water–gas shift reaction on copper [Surf. Sci. 541 (2003) 21–30]

L.T. Fan ^{a,*}, Yu-Chuan Lin ^a, Shahram Shafie ^a, Keith L. Hohn ^a, Botond Bertók ^b, Ferenc Friedler ^b

^a Department of Chemical Engineering, Kansas State University, 105 Durland Hall, Manhattan, KS 66506-5102, USA ^b Department of Computer Science, University of Pannonia, Egyetem u. 10, Veszprem H-8200, Hungary

> Received 11 September 2006; accepted for publication 20 March 2007 Available online 28 March 2007

A recent paper by Callaghan et al. [1] presents 70 reaction routes (RR_{*i*}s), which correspond to stoichiometrically feasible independent pathways (IP_{*i*}s), for the water–gas shift (WGS) reaction; these 70 IP_{*i*}s have been generated from 17 elementary reactions by resorting to a linear algebraic method in conjunction with some heuristics. This is in stark contrast to the 116 IP_{*i*}s obtained by us from the same set of 17 elementary reactions. Obviously, the former is substantially fewer than the latter. Our results have been obtained by resorting to the inordinately effective graph– theoretic, algorithmic method based on P-graphs (process graph) [2–6] in less than 2 s on a PC (Intel Pentium 4, CPU 3.06 GHz; and 1G RAM) upon inputting the 17 elementary reactions. The method comprises three algorithms crafted from two sets of axioms, and thus, it does not require any heuristic to implement; this is totally unlike the method employed by Callaghan et al. [1]; moreover, Pgraphs are unique bipartite graphs that are rigorously defined mathematically [7–11]. Both sets of IP_is are listed in Table 1 for comparison. Note that the 116 IP_is identified by us contain all the 70 IP_is identified by Callaghan et al. [1]. The authors have cited the P-graph based method in their earlier papers [5,6], but surprisingly not in [1].

To determine potentially dominant pathways through further energetic, computational, mechanistic and/or experimental exploration on the basis of an incomplete set of IP_{is} would indeed be precarious. It is mandatory that the IP_{is} be rigorously and exhaustively identified at the outset.

DOI of original article: 10.1016/S0039-6028(03)00953-1

^{*} Corresponding author. Tel.: +1 785 532 5584; fax: +1 785 532 7372. *E-mail address:* fan@cheme.ksu.edu (L.T. Fan).

^{0039-6028/\$ -} see front matter \odot 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.susc.2007.03.032

Table 1	
Comparison of the stoichiometrically feasible independent pathways identified in our work with those identified by Callaghan et al. [1]	

Our work			Callaghan et al. (2003)			
Designation (IP _i)	Mechanism	$\Delta H_{\rm ri}^{\rm o}$ (kcal/mol)	Designation (RR_i)	Mechanism	$\Delta H_{\rm ri}^{\rm o}$ (kcal/mol)	
IP ₁	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_8 + s_{11}$	-11	RR_1	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_8 + s_{11}$	-11	
IP ₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_7 + s_9$	-11	RR_2	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_7 + s_9$	-11	
IP ₃	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_{10}$	-11	RR ₃	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_{10}$	-11	
IP ₄	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_7 - s_{13}$	-11	RR_4	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_7 - s_{13}$	-11	
IP ₅	$s_1 + s_2 + s_3 + s_4 + s_5 + s_{10} + s_{11} - s_{12} + s_{13}$	-11	RR ₅	$s_1 + s_2 + s_3 + s_4 + s_5 + s_{10} + s_{11} - s_{12} + s_{13}$	-11	
IP ₆	$s_1 + s_2 + s_3 + s_4 + s_5 + s_9 + s_{10} + s_{13}$	-11	RR ₆	$s_1 + s_2 + s_3 + s_4 + s_5 + s_9 + s_{10} + s_{13}$	-11	
IP ₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_{11} - s_{12} + s_{13}$	-11	RR ₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_{11} - s_{12} + s_{13}$	-11	
IP ₈	$s_1 + s_2 + s_3 + s_4 + s_5 - s_8 + 2s_{10} - s_{12} + s_{13}$	-11	RR ₈	$s_1 + s_2 + s_3 + s_4 + s_5 - s_8 + 2s_{10} - s_{12} + s_{13}$	-11	
IP ₉	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_9 + s_{12} + s_{13}$	-11	RR ₉	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_9 + s_{12} + s_{13}$	-11	
IP_{10}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + s_9 + s_{11} + s_{13}$	-11	RR_{10}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + s_9 + s_{11} + s_{13}$	-11	
IP ₁₁	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_{11} - 2s_{12} + s_{13}$	-11	RR ₁₁	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_{11} - 2s_{12} + s_{13}$	-11	
IP ₁₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_9 + s_{13}$	-11	RR ₁₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_9 + s_{13}$	-11	
IP ₁₃	$s_1 + s_2 + s_3 + s_4 + s_5 - s_7 + 2s_{10} + s_{13}$	-11	RR ₁₃	$s_1 + s_2 + s_3 + s_4 + s_5 - s_7 + 2s_{10} + s_{13}$	-11	
IP_{14}	$s_1 + s_2 + s_3 + s_4 + s_5 - s_7 + 2s_8 + 2s_{11} + s_{13}$	-11	RR_{14}	$s_1 + s_2 + s_3 + s_4 + s_5 - s_7 + 2s_8 + 2s_{11} + s_{13}$	-11	
IP ₁₅	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_8 + s_{12} - s_{13}$	-11	RR ₁₅	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_8 + s_{12} - s_{13}$	-11	
IP ₁₆	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_8 + s_9 + s_{12}$	-11	RR_{16}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_8 + s_9 + s_{12}$	-11	
IP ₁₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_7 + s_{11} - s_{12}$	-11	RR ₁₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_7 + s_{11} - s_{12}$	-11	
IP ₁₈	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 + s_{15}$	-11	RR ₁₈	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 + s_{15}$	-11	
IP ₁₉	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_{12} + s_{15}$	-11	RR_{19}	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_{12} + s_{15}$	-11	
IP ₂₀	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 + s_{14}$	-11	RR_{20}	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 + s_{14}$	-11	
IP_{21}	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{14}$	-11	RR_{21}	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{14}$	-11	
IP ₂₂	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} + s_{14}$	-11	RR ₂₂	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} + s_{14}$	-11	
IP ₂₃	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{13} + 2s_{14}$	-11	RR ₂₃	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{13} + 2s_{14}$	-11	
IP ₂₄	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{13} + 2s_{15}$	-11	RR ₂₄	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{13} + 2s_{15}$	-11	
IP ₂₅	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{14} + s_{15}$	-11	RR ₂₅	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{14} + s_{15}$	-11	
IP ₂₆	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} - s_{12} + s_{14}$	-11	RR ₂₆	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} - s_{12} + s_{14}$	-11	
IP ₂₇	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + s_{12} + s_{14}$	-11	RR ₂₇	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + s_{12} + s_{14}$	-11	
IP ₂₈	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{13} + s_{15}$	-11	RR ₂₈	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{13} + s_{15}$	-11	
IP ₂₉	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} + s_{13} + s_{15}$	-11	RR ₂₉	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} + s_{13} + s_{15}$	-11	
IP ₃₀	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} - s_{13} + 2s_{14}$	-11	RR ₃₀	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} - s_{13} + 2s_{14}$	-11	
IP ₃₁	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} + s_{14} + s_{15}$	-11	RR ₃₁	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} + s_{14} + s_{15}$	-11	
IP ₃₂	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} + s_{13} + 2s_{15}$	-11	RR ₃₂	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} + s_{13} + 2s_{15}$	-11	
IP ₃₃	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_7 - s_{12} + s_{16}$	-11	RR ₃₃	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_7 - s_{12} + s_{16}$	-11	
IP ₃₄	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_8 + s_{16}$	-11	RR ₃₄	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_6 + s_8 + s_{16}$	-11	
IP ₃₅	$s_1 + s_2 + s_3 - s_4 + s_5 + 2s_7 - s_8 + 2s_{15} - s_{16}$	-11	RR ₃₅	$s_1 + s_2 + s_3 - s_4 + s_5 + 2s_7 - s_8 + 2s_{15} - s_{16}$	-11	
IP ₃₆	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_7 - s_8 + 2s_9 - s_{16}$	-11	RR ₃₆	$s_1 + s_2 + s_3 + s_4 + s_5 + 2s_7 - s_8 + 2s_9 - s_{16}$	-11	
IP ₃₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_{10} + s_{11} - s_{16}$	-11	RR ₃₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_{10} + s_{11} - s_{16}$	-11	
IP ₃₈	$s_1 + s_2 + s_3 + s_4 + s_5 - s_7 + 2s_{10} + s_{12} - s_{16}$	-11	RR ₃₈	$s_1 + s_2 + s_3 + s_4 + s_5 - s_7 + 2s_{10} + s_{12} - s_{16}$	-11	
IP ₃₉	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_{11} - s_{12} - s_{16}$	-11	RR ₃₉	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_{11} - s_{12} - s_{16}$	-11	
IP_{40}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_{11} - s_{13} - 2s_{16}$	-11	RR_{40}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_{11} - s_{13} - 2s_{16}$	-11	
IP ₄₁	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - 2s_{12} + s_{13} + 2s_{17}$	-11	RR_{41}	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - 2s_{12} + s_{13} + 2s_{17}$	-11	
IP ₄₂	$s_1 + s_2 + s_3 - s_4 + s_5 - s_7 + 2s_8 + s_{13} + 2s_{17}$	-11	RR ₄₂	$s_1 + s_2 + s_3 - s_4 + s_5 - s_7 + 2s_8 + s_{13} + 2s_{17}$	-11	
IP ₄₃	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_9 + s_{12} - s_{16}$	-11	RR_{43}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + 2s_9 + s_{12} - s_{16}$	-11	
IP ₄₄	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{12} + 2s_{14} + s_{16}$	-11	RR ₄₄	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{12} + 2s_{14} + s_{16}$	-11	
IP ₄₅	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{12} + 2s_{15} - s_{16}$	-11	RR ₄₅	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{12} + 2s_{15} - s_{16}$	-11	
IP ₄₆	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{12} + s_{14} + s_{17}$	-11	RR_{46}	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{12} + s_{14} + s_{17}$	-11	

L.T. Fan et al. | Surface Science 601 (2007) 2401-2405

IP ₄₇	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{12} - s_{16} + 2s_{17}$	-11	RR_{47}	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{12} - s_{16} + 2s_{17}$
IP_{48}	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{13} - 2s_{16} + 2s_{17}$	-11	RR ₄₈	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 - s_{13} - 2s_{16} + 2s_{17}$
IP ₄₉	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{15} - s_{16} + s_{17}$	-11	RR_{49}	$s_1 + s_2 + s_3 - s_4 + s_5 + s_7 + s_{15} - s_{16} + s_{17}$
IP_{50}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + s_9 + s_{11} - s_{16}$	-11	RR_{50}	$s_1 + s_2 + s_3 + s_4 + s_5 + s_7 + s_9 + s_{11} - s_{16}$
IP ₅₁	$s_1 + s_2 + s_3 + s_4 + s_5 - s_8 + 2s_{10} - s_{16}$	-11	RR ₅₁	$s_1 + s_2 + s_3 + s_4 + s_5 - s_8 + 2s_{10} - s_{16}$
IP ₅₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_{11} - s_{16}$	-11	RR ₅₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_{11} - s_{16}$
IP ₅₃	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + 2s_{12} + 2s_{15} - s_{16}$	-11	RR 53	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + 2s_{12} + 2s_{15} - s_{16}$
IP ₅₄	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + 2s_{13} + 2s_{15} + s_{16}$	-11	RR 54	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + 2s_{13} + 2s_{15} + s_{16}$
IP55	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + 2s_{14} + s_{16}$	-11	RR ₅₅	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + 2s_{14} + s_{16}$
IP56	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_9 + 2s_{12} - s_{16}$	-11	RR 56	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_9 + 2s_{12} - s_{16}$
IP ₅₇	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_9 + 2s_{12} + s_{16}$	-11	RR 57	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 + 2s_9 + 2s_{12} + s_{16}$
IP ₅₀	$s_1 + s_2 + s_3 + s_4 + s_5 + s_8 - s_{12} + s_{12} + 2s_{17}$	-11	RR 50	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 - s_{12} + s_{12} + 2s_{17}$
IP 50	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 - s_{12} + s_{15} + s_{17}$	-11	RR 50	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{12} + s_{15} + s_{17}$
IP ₆₀	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{13} + s_{17}$	-11	RR ₆₀	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 + s_{14} + s_{17}$
IP ₆₁	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 - s_{14} + s_{17}$	-11	RR ₆₁	$s_1 + s_2 + s_3 - s_4 + s_5 + s_8 - s_{14} + s_{17}$ $s_1 + s_2 + s_2 - s_4 + s_5 + s_8 - s_{16} + 2s_{17}$
IP ₆₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_{10} + s_{12} - s_{16}$	-11	RRG	$s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + s_{10} + s_{12} - s_{16}$
	$s_1 + s_2 + s_3 + s_4 + s_5 + s_9 + s_{10} + s_{12} + s_{13}$	-11	RR ₆₂	$s_1 + s_2 + s_3 + s_4 + s_5 + s_9 + s_{10} + s_{12} + s_{13}$
IP ₆₄	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{12} + s_{15} + s_{16}$	-11	RR ₄	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{12} + s_{15} + s_{17}$ $s_1 + s_2 + s_2 + s_5 + s_{10} + s_{12} + s_{15} - s_{16}$
IP ₆₄	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{12} + s_{15} + s_{16}$	-11	RR cc	$s_1 + s_2 + s_3 + s_5 + s_{10} + s_{12} + s_{13} - s_{16}$
IP ₆₅	$s_1 + s_2 + s_3 + s_5 + s_{10} - s_{16} + s_{17}$	_11	RR ₆₅	$s_1 + s_2 + s_3 + s_5 + s_{10} - s_{16} + s_{17}$ $s_1 + s_2 + s_2 + s_4 + s_6 + s_7 - s_{12} + s_{17}$
IP 60	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 - s_{12} + s_{17}$	-11	RR cz	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 - s_{12} + s_{17}$
	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_1 / s_1 - s_1 c_1$	_11	RR co	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_{17}$ $s_1 + s_2 + s_2 + s_5 + s_7 + s_{17} + s_{17} - s_{17}$
IP co	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} + s_{15} + s_{16}$	_11	RR co	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} + s_{15} + s_{16}$
IP 69	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 = s_{16} + s_{17}$	_11	RR ₇₀	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 + s_{16} + s_{17}$
IP ₇ .	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 + s_9 - s_{13} + s_{17}$	_11	RR()0	51 + 52 + 53 + 55 + 58 + 59 + 513 + 517
IP ₇₀	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 + s_9 = s_{11} + s_{17}$ $s_1 + s_2 + s_3 + s_5 + 2s_6 + s_7 - s_{10} - s_{10} + s_{17}$	_11		
IP ₇₂	$s_1 + s_2 + s_3 + s_5 + z_{26} + s_7 - s_{11} - s_{13} + s_{17}$	_11		
IP ₇	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 + s_{13} + s_{15}$	_11		
IP ₇₄ IP ₇₅	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} + s_{12} + 2s_{13} + s_{15}$	_11		
IP ₇₅	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} + s_{13} + 2s_{15} + s_{17}$	_11		
IP ₇₆	$s_1 + s_2 + s_3 + s_5 + s_7 + 2s_9 = s_{11} + s_{13} + s_{17}$ $s_1 + s_2 + s_3 + s_5 + s_7 + s_{17} = 2s_{12} + s_{12} + s_{17}$	_11		
IP ₇₀	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} - 2s_{12} + s_{13} + s_{17}$	_11		
	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 = s_{12} + s_{13} + s_{17}$	_11		
IP ₂₀	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} + s_{13} + 2s_{14} + s_{17}$	_11		
IP ₈₀	$s_1 + s_2 + s_3 + s_5 + 37 + 511 + 514 + 515 + 517$ $s_1 + s_2 + s_3 + s_5 + 2s_7 - s_9 + s_9 + s_{17} - s_{17}$	_11		
IP ₈₂	$s_1 + s_2 + s_3 + s_5 + 2s_7 + s_8 + s_9 + s_{15} + s_{16}$	_11		
IP ₈₂	$s_1 + s_2 + s_3 + s_5 + s_7 + s_9 + s_{12} + s_{15} - 2s_{16} + s_{17}$	-11		
IP ₆₄	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} - s_{13} - 2s_{16} + s_{17}$	_11		
IP ₈₄ IP ₆₅	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} - s_{12} - s_{16} + s_{17}$	_11		
IP ₈₅	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 - s_{13} + s_{14}$	-11		
IP 86	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 - s_{12} + s_{14} + s_{16}$	_11		
	$s_1 + s_2 + s_3 + s_5 + s_6 + s_7 - s_{13} - s_{16} + s_{17}$	-11		
IP 88	$s_1 + s_2 + s_3 + s_5 + s_7 + s_{11} - s_{13} + s_{14} - s_{16}$ $s_1 + s_2 + s_2 + s_5 + s_7 + s_8 - s_9 + s_{11} + s_{15}$	-11		
IP _{oo}	$s_1 + s_2 + s_3 + s_5 + 2s_6 + s_8 - s_9 + s_{11} + s_{13}$	-11		
IP ₀₁	$s_1 + s_2 + s_3 + s_5 + s_6 + s_6 + s_{12} + s_{12} + s_{15}$	-11		
IP ₀₂	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + s_{12} + s_{13} + s_{15}$ $s_1 + s_2 + s_2 + s_5 + s_8 + s_9 + 2s_{12} + s_{15} + s_{15}$	-11		
IP 92	$s_1 + s_2 + s_3 + s_5 + s_8 + 39 + 2s_{13} + s_{15} + s_{16}$ $s_1 + s_2 + s_2 + s_5 - s_7 + 2s_9 + s_{12} + s_{15} + s_{16}$	-11		
IP ₀₄	$s_1 + s_2 + s_3 + s_5 - s_7 + 2s_8 + s_{11} + s_{13} + s_{17}$ $s_1 + s_2 + s_2 + s_5 + s_6 + s_{11} - s_{12} + s_{12} + s_{17}$	-11		
11 94 IPor	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} - s_{12} + s_{13} + s_{17}$ $s_1 + s_2 + s_2 + s_5 + s_8 + s_{11} - s_{12} + s_{13} + s_{17}$	-11		
IP _{oc}	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + 2s_{14} + s_{15} + s_{16}$ $s_1 + s_2 + s_2 + s_5 + s_8 + s_9 + s_{14} - s_{14} + s_{15}$	-11		
IP.07	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + s_{14} - s_{15} + s_{17}$ $s_1 + s_2 + s_2 + s_5 + s_8 + s_9 + s_{14} - s_{15} + s_{17}$	-11		
11 97	$s_1 + s_2 + s_3 + s_5 + s_8 - s_9 + 2s_{11} + s_{15} - s_{16}$	11		

 $\begin{array}{c} -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \end{array}$

-11 -11

-11-11-11-11

Table 1 (continued)

Our work			Callaghan et al. (2003)			
Designation (IP _i)	Mechanism	$\Delta H_{\rm ri}^{\rm o}$ (kcal/mol)	Designation (RR_i)	Mechanism	$\Delta H_{\rm ri}^{\rm o}$ (kcal/mol)	
IP ₉₈	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + 2s_{12} + s_{15} - s_{16}$	-11				
IP ₉₉	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 - s_{15} - s_{16} + 2s_{17}$	-11				
IP_{100}	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} + s_{12} + s_{15} - s_{16}$	-11				
IP ₁₀₁	$s_1 + s_2 + s_3 + s_5 + s_8 + s_{11} - s_{16} + s_{17}$	-11				
IP ₁₀₂	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + s_{12} - s_{16} + s_{17}$	-11				
IP ₁₀₃	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_{13} + s_{15} + s_{16}$	-11				
IP_{104}	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_{12} - s_{13} + s_{14}$	-11				
IP ₁₀₅	$s_1 + s_2 + s_3 + s_5 + s_6 + s_8 + s_{14} + s_{16}$	-11				
IP ₁₀₆	$s_1 + s_2 + s_3 + s_5 + s_8 + s_9 + s_{13} + s_{14} + s_{16}$	-11				
IP ₁₀₇	$s_1 + s_2 + s_3 + s_5 + s_6 - s_9 + s_{10} + s_{15}$	-11				
IP ₁₀₈	$s_1 + s_2 + s_3 + s_5 + s_6 + s_{10} - s_{11} + s_{12} + s_{15}$	-11				
IP ₁₀₉	$s_1 + s_2 + s_3 + s_5 + s_6 + s_{10} - s_{11} + s_{17}$	-11				
IP ₁₁₀	$s_1 + s_2 + s_3 + s_5 + s_6 - s_9 + s_{10} - s_{12} + s_{17}$	-11				
IP ₁₁₁	$s_1 + s_2 + s_3 + s_5 + s_9 + s_{10} - s_{11} + s_{13} + s_{17}$	-11				
IP ₁₁₂	$s_1 + s_2 + s_3 + s_5 - s_7 + 2s_{10} - s_{11} + s_{13} + s_{17}$	-11				
IP ₁₁₃	$s_1 + s_2 + s_3 + s_5 - s_8 - s_9 + 2s_{10} + s_{15} - s_{16}$	-11				
IP ₁₁₄	$s_1 + s_2 + s_3 + s_5 - s_9 + s_{10} + s_{11} + s_{15} - s_{16}$	-11				
IP ₁₁₅	$s_1 + s_2 + s_3 + s_5 + s_7 - s_8 + s_{10} + s_{15} - s_{16}$	-11				
IP ₁₁₆	$s_1 + s_2 + s_3 + s_5 - s_7 + s_8 + s_{10} + s_{13} + s_{17}$	-11				

References

- C. Callaghan, I. Fishtik, R. Datta, M. Carpenter, M. Chmielewski, A. Lugo, Surf. Sci. 541 (2003) 21.
- [2] L.T. Fan, B. Bertók, F. Friedler, S. Shafie, Hung. J. Ind. Chem. 29 (2001) 71.
- [3] L.T. Fan, B. Bertók, F. Friedler, Comput. Chem. 26 (2002) 265.
- [4] L.T. Fan, S. Shafie, B. Bertok, F. Friedler, D.-Y. Lee, H. Seo, S. Park, S.-Y. Lee, J. Chin. Inst. Eng. 28 (2005) 1021.
- [5] D.-Y. Lee, L.T. Fan, S. Park, S.Y. Lee, S. Shafie, B. Bertok, F. Friedler, Metab. Eng. 7 (2005) 182.
- [6] H. Seo, D.-Y. Lee, S. Park, L.T. Fan, S. Shafie, B. Bertok, F. Friedler, Biotechn. Lett. 23 (2001) 1551.
- [7] F. Friedler, K. Tarjan, Y.W. Huang, L.T. Fan, Chem. Eng. Sci. 47 (1992) 1973.
- [8] F. Friedler, K. Tarjan, Y.W. Huang, L.T. Fan, Comput. Chem. Eng. 17 (1993) 929.
- [9] F. Friedler, J.B. Varga, L.T. Fan, Chem. Eng. Sci. 50 (1995) 1755.
- [10] F. Fridler, L.T. Fan, B. Imreh, Networks 28 (1998) 119.
- [11] M.H. Brendel, F. Friedler, L.T. Fan, Comput. Chem. Eng. 21 (2000) 1859.