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Separation-network synthesis (SNS) is carried out by a heuristic, algorithmic or combined method. For any separation-
network, the algorithmic method may yield the optimal structure provided that a valid mathematical model of the
network structure is available. In general, a mathematical model of the network structure is constructed by imposing
constraints on some structural properties of optimal separation-networks, e.g., exclusion of redundant separations. The
fundamental structural properties of separation-networks have been explored in the current work. The validity of the
mathematical model, specifically with respect to redundancy, has been systematically studied. It is unequivocally
demonstrated that redundant separators may be contained in an optimal separation-network under certain circumstances.
Two definite classes of problems of separation-network synthesis have been parametrically studied extensively for

illustration.
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Introduction

Separation-network synthesis (SNS) is carried out either
heuristically or algorithmically (see, e.g., [1-12]). In
spite  of their effectiveness for various synthesis
problems, heuristic methods often yield non-optimal
solutions for some classes of SNS problems under
certain circumstances. Algorithmic methods entail the
construction of a “super-structure”, presumed to contain
the optimal structure. The algorithmic methods are
generally implemented through mathematically rigorous
computational procedures. They may, therefore, yield
the optimal solutions for SNS problems provided that
the super-structure is complete and the mathematical
model is correctly constructed on the basis of this super-
structure.

To configure both the potentially optimal structures
as well as the super-structure is of utmost importance for
algorithmic methods of process synthesis. In general, it
is exceedingly difficult to generate these structures; only
a limited number of papers has been published, which
deal with the structure generation. To be able to
accomplish this task, the fundamental structural
properties of the structures must be known.
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FRIEDLER et al. [13], KOVACS et al. [14], and
KoOVACs et al. [15] have explored unique or peculiar
properties of the SNS problems, e.g., inclusion of
recycling. Such unique properties need to be taken into
account in generating the potentially optimal structures
as well as the super-structure; nevertheless, these
properties have been hardly investigated. In the current
work, the completeness of the super-structures,
specifically with respect to redundancy, is systematically
studied; it is demonstrated that the involvement of
redundancy cannot be totally avoided in synthesizing an
optimal separation-network. The results are illustrated
with two classes of SNS problems. In essence, this work
presents some results from our continuing effort to
explore the foundation of the algorithmic methods for
process synthesis.

Any of the available methods including both
algorithmic and heuristic methods for SNS disallows the
inclusion of two or more separators performing an
identical task in a network with a single feed-stream of n
components, i.€., the synthesized network comprises at
most (n - 1) separators. Obviously, the separation of
multiple feed-streams, each containing some or all of n
components, can also be accomplished through a
separation-network having no more than (n-1)
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separators without repeating any separation task. In
composing a separation-network with multiple feed-
streams, repeating a certain separation task is usually
avoided between any pair of feed-streams and product-
streams. Even when (n - 1) separators may be sufficient
to construct a separation-network, the resultant network
might not be optimal since the separation can also be
accomplished through a network containing more than
(n- 1) separators, some of which repeat one or more
separation tasks, thereby contradicting a traditional
heuristic rule for synthesizing nearly ideal systems. This
differs from the situation in which it is economically
advantageous to perform an additional separation; the
product from the additional separation is eventually
blended with other components from which it is
separated. Nevertheless, the situation also requires an
additional separation over the minimum number [2,4].

Fundamental Properties of Feasible Separation-
Networks

Evidently, a stream must not be fed into any separator in
an optimal separation-network where no separation
occurs. Consequently, a single-component stream must
not be fed into any separator. Another significant
property of optimal separation-networks is stated as the
theorem given below.

Theorem. Multiple feed-streams are separated into
pure-product streams by a  separation-network
comprising simple and sharp separators, dividers, and
possibly mixers. Then, every divider is in a loop of this
network if the cost of the network is the sum of the costs
of the separators, each of which is a monotone
increasing concave function of its mass load, and if the
network is optimal (see Appendix).

In the light of the fundamental properties of feasible
and potentially optimal separation-networks described in
the preceding two paragraphs, two classes of SNS
problems are examined through extensive parametric
studies. These simple problems illustrate that more than
(n - 1) separators may appear in an optimal separation-
network. In both classes of problems, single-component
(pure) product-streams are to be generated from two
multicomponent feed-streams by means of simple and
sharp separators together with dividers and mixers.

Parametric Studies

The cost of a separation-network is regarded as the sum
of the costs of its separators. By following the usual
convention of facilitating computation and comparison,
the cost of the i separator, c;, is considered to be a
concave and monotone increasing function of its mass
load, e.g.,

G =(fi'Dn)b

Table 1. Pertinent information on the first class of separation-
network synthesis problems.

A B C
Feed 1 Al B1 Cl1
Feed 2 A2 B2 C2
Product 1 Al+A2 0 0
Product 2 0 B1+B2 0
Product 3 0 0 Ci1+C2

Note: The degree of difficulty of any separation is assumed to be 1
In this expression, f; is the mass load through the i
separator; D;, the degree of difficulty of the i*
separation; and b, a constant between 0 and 1 (see, e.g.,
[9]). The value of b is taken to be 0.6 for the present
work.

As commonly practised, the components in a stream
forming a ranked list are arranged in the descending
order of a certain property of any chemical species
involved, e.g., relative volatility or particle size, on
which the separation is based. The order in this list
remains invariant when any component from the stream
is eliminated by the separation. When two sublists are
formed from the list by a separator, any component in
the higher ranked sublist will remain higher than any
component in the lower ranked sublist.

First class of problems

This class of problems involves two three-component
(A,B,C) feed-streams, specifically feedl (F1) and feed2
(F2), and three pure product-streams, each containing
one of the components, A, B, and C. The pertinent
information on this class of problems is listed in Table
1; for simplicity, the degree of difficulty of every
separation is assumed to be 1, i.e., D; is 1 for every i.
We are to explore if redundant separators appear in an
optimal separation-network and if a complete super-
structure can be generated.

Only two types of separators are required for this
class of problems; one is S1 separating components A
and B, and the other is S2 separating components B and
C. Because of the relative simplicity of the system of
interest, all the structures satisfying the fundamental
properties of feasible separation-networks described in
the preceding section can be identified by exhaustively
examining the appropriate combinations of S1 and S2.
Specifically, as a consequence of the theorem, no feed-
stream is split in an optimal structure since every feed-
stream resides outside a loop. Naturally, when the feed-
streams are separately connected to two individual
separators identical in type, the resultant structures
cannot be optimal because the cost function of each
separator is concave, and thus, combining the two
lowers the cost. In other words, there can be at most four
separators in an optimal structure of the given class of
problems: one for each of the two feed-streams, one for
separating streams containing components A and B, and
one for separating streams containing components B and
C. The structures, each comprising four separators, in
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Fig.1. Feasible structures of the first class of separation-network syn'thesis problems.

which all the -possible linkages of the streams are
considered, are structures #3 and #8 in Fig.l. The
structures containing three separators are those
comprising one S1 and two S2’s, which are structures #5
and #7, and those comprising two S1's and one S2,
which are structures #4 and #6. The structures, each
consisting of only two separators, are structures #1 and
#2. It is worth noting that only these two among all the
eight structures do not contain redundant separators.
Each of the eight structures is feasible in the sense
that it yields the desired product-streams from any pair
of three-component feed-streams. The most important
question is if these feasible structures can be optimal in
certain regions of the six dimensional space defined by

the feed rates and compositions; hence, the structures
have been parametrically studied through exhaustive
trial and error by varying the feed rates and
compositions and comparing the corresponding costs of
all eight structures. Six out of the eight structures turn
out to be indeed optimal under some feed conditions.
Table 2 lists an instance at which each structure is
optimal as a numerical proof; however, structures #3
and #8 have not been found to be optimal under any
circumstances even though they are feasible. Note that
structures #4 through #7 contain redundant separators
between a feed-stream and a product-stream. It is
apparent that for an SNS problem with muitiple feed-
streams and pure product-streams, two or more
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Table 2. Feed-streams where a specific structure is optimal in
the first class of separation-network synthesis problems.

Fl1 F2 Optimal Structure
[130,1,100] [100,50,30] Structure#!
[1,50,100] [100,1,200] Structure#2
[5,10,100] [200,1,100] Structure#4
[100,1,200] [100,10,5] Structure#5
[1,1,100] [200,1,100] Structure#6
[100,1,200] [100,2,2] Structure#7

Table 3. Pertinent information on the second class of
separation-network synthesis problems.

A B C D
Feed 1 Al B1 C1 0
Feed 2 0 B2 C2 D2
Product1 Al 0 0 0
Product 2 0 BIl+B2 0 0
Product 3 0 0 Cil+C2 0
Product 4 0 0 0 D2

Note: The degree of difficulty of any separation is assumed to be 1.

separators may perform an identical separation task
between a feed-stream and a product-stream in an
optimal structure even when pure product-streams are to
be produced.

The optimal solution can always be deduced from a
super-structure, an example of which is given in Fig.2, if
it is constructed as the union of all the potentially
optimal structures. On the contrary, it is extremely
difficult, if not impossible, for heuristic methods to
generate all six potentially optimal structures involving
redundancy due to the fact that simple heuristic rules
may be incapable of generating every potentially
optimal structure even for simple problems.

Second Class of Problems

The pertinent information is given in Table 3 on this
class of SNS problems. Two three-component feed-
streams, specifically feed1l (F1) (A,B,C) and feed2 (F2)
(B,C.D), are to be separated into four pure product-
streams, each containing one of the four components, A,
B,C,and D.

All eight structures generated in the previously
described exhaustive examination are given in Fig.3.
They are feasible for any instance of the second class of
SNS problems; also they are potentially optimal. Table 4
indicates that six out of the eight feasible separation-
networks can be optimal under some feed conditions;
three of the six contain redundant separators. Even if
structure #4 in Fig.3 is feasible for each instance of the
second class of problems, it cannot be optimal under any
circumstance since structure #5 is always superior to
structure #4 in terms of the cost; this can be readily
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Fig.2. Super-structure of the first class of separation-network
synthesis problems.

verified by means of the basic properties of concave
functions, which give rise to the well-known inequality
relation (see, e.g., [16]).

The super-structure given in Fig.4 can be
constructed as the union of all potentially optimal
structures. The optimal solution can always be generated
from this super-structure.

Conclusions

The fundamental structural properties of separation-
networks have been examined for the purpose of
synthesizing the complete set of potentially optimal
networks. Two definitive classes of problems of
separation-network synthesis have been extensively
studied parametrically for illustration. Specifically, it is
unequivocally demonstrated that the frequently-invoked
heuristic rule or constraint on redundancy of separators
may prevent the truly optimal solutions to be obtained.
This heuristic rule excludes two or more separators
performing an identical separation task between a feed-
stream and a product-stream in a separation-network
with multiple feeds. In reality, identical separation tasks
may appear in an optimal network between a pair of
feed-stream and product-stream; therefore, they must be
allowed in establishing the super-structure for an
algorithmic method or in determining a separation-
network by a heuristic method. It should be cautioned,
however, that a variety of practical considerations, such
as piping cost, pumping energy, maintainability, and
controllability, may overshadow the desirability of
repeating an identical separation task in a separation-
network in some situations.

Acknowledgement

This research was partially supported by the Hungarian
Science Foundation Grant No. T-014212.



Table 4. Feed-streams where a specific structure is optimal in

Fl

F1

3]

Pl

s? %—Qn
ﬂ B>—.—O P3

5]
P4
9Pl
- r-s|2 M D-=—8 P3
P4
-® Pl
9 P2

IM!

o p3
® P4
Pl

s']
M s P2
—s’] or
o P4

Fl

F1

Fl

217

® Pl

-_EN
P2

P4

Pl

Fig.3. Feasible structures of the second class of separation-network synthesis problems.

the second class of separation-network synthesis problems

[10,10,100,0}
[150,10,1,0]
[150,10,100,0]
(100,10,70,0]
[100,10,150,0]
[10,30,110,0]

Fl F2 Optimal Structure
[0,100,10,10] Structure#1
[0,110,30,10] Structure#2
[0,110,30,10]} Structure#3
[0,20,10,10]) Structure#5
[0,20,10,10] Structure#7
[0,100,10,150] Structure#8

SYMBOLS

cost of the i separator
mass load through the i separator
degree of difficulty of the i separation

b

A
B
C
D

stl

constant with a value of 0.6
component of the streams
component of the streams
component of the streams
component of the streams
feed-stream 1

feed-stream 2
product-stream 1
product-stream 2
product-stream 3
product-stream 4

separator of type 1
separator of type 2

original stream prior to splitting
stream 1 after splitting
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network synthesis problems.

stream 2 after splitting

mass load of stream st

mass load of stream st1

mass load of stream st2

real variable for changing m1 and m2
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Appendix

Proof of the Theorem on the Dividers in an Optimal
Separation-Network

Theorem. Multiple feed-streams are separated into
pure-product streams by a separation-network
comprising simple and sharp separators, dividers, and
possibly mixers. Then, every divider is in a loop of this
network if the cost of the network is the sum of the costs
of the separators, each of which is a monotone
increasing concave function of its mass load, and if the
network is optimal.

Proof. Let us hypothesize that stream st with a mass
load of m and residing outside a loop in an optimal
separation-network is split into two streams, stream st/
with a mass load of m/ and stream st2 with a mass load
of m2. The resultant configuration is depicted in Fig.5.

Since the mass load of each stream in the optimal
structure is known, the mass load through the i
separator in the network, f;, can be calculated as follows:

fi=fi+ il

where f ll and f |2 are the mass loads attributable to m/

and m2, respectively, and f ? is the mass load resulting

from all other streams. As such, the cost function of the
optimal separation-network, cost, can be calculated as

cost =3 g( 9+ f1+ £2) (A1)

where 8;(x)=(Di x)°

and D; is the degree of difficulty of the i separation.
Now let us vary the splitting ratio of stream st into

streams st/ and st2 without varying the total mass load,

m, or equivalently the sum of mass loads of the two

streams. Changing the mass load of st/, i.e., m/, to



(k'ml+m2

)-ml, 0<k<1
ml

and the mass load of st2, i.e., m2, to

((l_k)‘m1+m2)‘

m2

does not alter the total mass load of s, i.e., m, since

ml+m2

kM2 e (1-k)-
ml m

m2=m.

Thus, f ll is transformed to

m1+m2

fis

and f 12 is transformed to

ml+m?2
m2

(1-k) fi'

Hence,

cost(k) = Zg( 0 mﬁln&f

+( - ).(m1+m2)fi2)

o (A-2)
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It is worth noting that f ? attributable to all other

streams are unaffected by the change in the splitting
ratio, because the mass load of s, i.e., m, is fixed. The
Eq.(A-2) indicates that the cost of the network depends
on k.

When k = ml/(ml+m2) or k = ml/m, Eq.(A-2)
reduces to Egq.(A-I1), i.e. the initial structure is
recovered. Since the initial structure is persumed to be
optimal, cost(k) is minimum at

0< k= __‘”.‘"_

ﬂ<l.

Since function g; is concave, i.e., its second
derivative, g;", is negative,

o (ml+m2) | (ml+m2) 2)2
cost(k)"'= %( il -fi - 2 -fi

. k - (ml+m2) (1= k) (ml+m2)
8i (f?+ i m2 fiz)'

is also negative, thereby, implying that cost(k) is also
concave in the interval [0,1], and consequently, its
minimum is at either 0 or 1. This means that stream st
outside a loop is not split, thus contradicting the initial
hypothesis. In other words, every divider must be in a
loop of any optimal separation-network with multiple
feed-streams and pure product-streams.



