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Optimal scheduling of batch processes becomes excessively complex if large number of batches of the products has to be 
generated. In most cases, however, the search space of the optimization procedure can be drastically reduced by 
eliminating the redundant solutions through additional combinatorial constraints. The proposed approach that generates 
these additional constraints is described here for a graph-theoretical method for batch process scheduling, nevertheless, it 
can be conveniently embedded into other methods developed for optimal scheduling. 
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Introduction 

In multipurpose plants, a variety of production resources 
(raw materials, equipment, utilities, manpower) are 
shared by a number of processing operations that 
manufacture several products. The types of operations 
involved can vary from continuous to batch, a fact that 
given the inherent flexibility of such types of plants, 
leads to complex scheduling problems. 

The problem of short-term scheduling of batch plants 
seeks to determine the optimal strategy for satisfying the 
production demand of a variety of products at specific 
dates and/or at the end of a given production horizon. 
The short-term scheduling is specially relevant for 
flexible production networks (multipurpose plants), 
where the production of individual batches, even for the 
same product, does not follow the same pattern but must 
be specified according to an overall performance index 
and is subject to capacity and time constraints. It 
involves the allocation of equipment and resources to 
orders, the sequences of these orders and the route 
determination of the material flows through the plant. 

Short-term scheduling of multipurpose batch plants 
has received considerable attention over the past two 
decades. Many diverse approaches, mathematical 
formulations and solution algorithms have been 
proposed. Recent reviews can be found in [1-4]. 

A major question in any scheduling algorithm deals 
with the time problem representation. Kondili et al. [5] 
present a formulation to the modeling of a series of 
scheduling problems that arises in batch plants, namely 
the State Task Network (STN). This representation is 
based on a uniform time discretization and on the 
assumption that events only happen at the boundaries of 
these intervals, which implies the generation of a large 
number of integer variables in problems of industrial 
relevance. The computational effort has been reduced by 
reformulating the allocation constants [6] or by heuristic 
decomposition [7]. These improvements have 
encouraged recent work toward the development of 
efficient methods of comparable generality based on the 
continuous-time representation, which was first 
introduced by Sahinidis and Grossmann [8]. 

The Resource-Task-Network (RTN) representation 
proposed by Pantelides [9] was the basis for a 
continuous time formulation by Zang and Sargent [10]. 
Later, Shilling and Pantelides [11] presented a simpler 
RTN formulation. However, the resulting MILP 
problem is still very cumbersome to solve. 

Otherwise, an approach that has been traditionally 
used is based on a graph representation combined with a 
branch and bound method. These techniques for the case 
of scheduling, known as edge finding methods [12-14] 
have proved to be very effective for solving special 
types of job shop scheduling problems. An extensive 
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computational study of the problem was also performed 
by Applegate and Cooke [15], in which the authors 
develop heuristics for finding feasible schedules, cutting 
planes for obtaining lower bounds and a specialized 
branch and bound method. Very recently, a new graph 
representation called S-graph, appropriate for 
combinatorial algorithms, has been introduced [16, 17]. 
Once all process tasks are represented in a recipe-graph, 
an appropriate search strategy permits to generate the S-
graph of the optimal schedule effectively, i.e., a drastic 
reduction of computation time can be achieved 
compared to mathematical programming solution 
techniques. In this paper, the properties of scheduling 
problems are further exploited by embedding an 
additional acceleration tool in the solver, which results 
in an increased computational efficiency needed in the 
solution of large scheduling and re-scheduling problems. 

S-graph representation 

The present work is based on the S-graph representation 
[16] and a corresponding general framework [17] that 
can solve different types of production scheduling 
problems. In this framework, a node (so-called task 
node) is assigned to each task given in the recipe for 
producing a single batch of a product or products. An 
additional node (so-called product node) is introduced 
for each product for technical reasons. It is supposed 
that there is at least one equipment unit to perform each 
task; set Si denotes the set of those equipment units that 
can perform the task represented by task node i. The 
processing orders of the tasks are given by weighted 
arcs (so-called recipe-arcs) of the graph. The processing 
time of a task may be different for different equipment 
units. In this case, the weight of the recipe-arc is the 
minimum of the processing times of the plausible 
equipment units. In this representation, the value 
assigned to an arc expresses a lower bound for the 
difference of the starting times of the two related tasks. 
The resultant graph is the recipe-graph for the single 
batch production. For generating multiple batches of the 
products, the appropriate part of this S-graph is repeated 
according to the number of batches to get the recipe-
graph of multiple batches. 

An S-graph can represent both non-intermediate 
storage (NIS) and unlimited intermediate storage (UIS) 
policies appropriately. For the former, let τj denote the 
set of those tasks that follow task j according to the 
recipe. If equipment unit Ei is assigned to task j and 
consecutively to task k, then, a zero weighted arc (or an 
arc whose weight is equal to the length of the 
changeover time if applicable), called schedule-arc, is 
established from each element of τj to k. For example, 2-
6 is the task sequence of equipment unit E1 shown in 
Fig.1. In this example, E1 is assigned to tasks 2 and 6 
and zero weighted arcs are established from the tasks 
that follow task 2 (τj={3,4}) to task 6 (consecutive task 
of task 2). If UIS policy is applied in any part of the 
scheduling problem or globally for the whole problem,  
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Fig.1 S-graph representation of task sequence 2-6 for 
equipment unit E1 with NIS policy 

the introduction of an additional node or nodes for the 
"unlimited" storage unit or units transforms the policy of 
the problem to NIS. In the following, only the NIS policy 
will be considered. 

Formally, directed graph G can be given as a pair 
),( AN  where N is a finite set, the set of nodes, and A is 

a set of pairs of nodes identifying the arcs of the graph 
(i.e., NNA ×⊆ ). In an S-graph, two classes of arcs, the 
so-called recipe-arcs and schedule-arcs are specified. 
Therefore, an S-graph is given in the form of 

),,( 21 AANG , where N, A1, and A2 denote the sets of 

nodes, recipe-arcs, and schedule-arcs, respectively. It is 
supposed that NNA ×⊆1 , NNA ×⊆2 , and 

∅=∩ 21 AA ; furthermore, a nonnegative value, ),( jic , 

assigned to each arc, denotes the weight of the arc ),( ji . 

In practice, if an arc is established from node i to node j, 
i.e., 21),( AAji ∪∈ , then it is supposed that the task 

corresponding to node j cannot start its activity earlier 
than ),( jic  time after the task corresponding to node i 

started. 

Multiple batches of a product 

A simple way of describing the multipurpose scheduling 
problems with more than one batch of the products is by 
considering each batch as an individual product. Even 
though the basic algorithm published in [17] can be used 
directly for solving this simplistic model, it is not 
necessarily efficient enough if the number of batches of 
the same product is excessively large. Embedding 
additional tools into the basic algorithm, however, may 
result in a sufficient acceleration for solving large-scale 
problems. First, a simple example will illustrate the 
source of inefficiency to be overcome by the embedded 
tools. 

Example 1 

Suppose that two batches of product A and one batch of 
product B are to be produced. Product A is produced in 
three consecutive steps that can be performed by any 
element of the sets of equipment units S1, S2, and S3, 
respectively. Product B is produced in two consecutive 
steps, where the first step and second step can be 
performed by any equipment unit given in sets S4 and  
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Fig.2 Recipe-graph of Example 1 
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Fig.3 Two technically identical schedules 

 

Fig.4 Recipe-graph of Example 1 extended by an auxiliary-arc 
expressing the order of the two batches of product A 

S5, respectively. The recipe-graph of this example is 
given in Fig.2. 

It is assumed that equipment units E1, E2, and E3 
are in sets S1, S2∩S4, and S3∩S5, respectively. Two 
technically identical schedules are shown in Fig.3; only 
one of them should be considered, even though both of 
them are generated by the basic algorithm. 

As far as the example illustrates, the source of 
inefficiency is the possibility of generating different 
orders of technically identical batches. This redundancy 
in the set of solutions can, however, be eliminated by 
additional constraints. For example, if it is supposed that 
the activity denoted by task node 4 cannot start before 
the starting time of the activity denoted by task node 1, 
redundancy appearing in Fig.3 is excluded. This 
constraint can be conveniently represented by an 
additional arc from node 1 to 4 in the S-graph (see 
Fig.4). Note that, the additional arc or arcs to exclude 
redundant solutions are not considered as recipe-arcs or 
schedule-arcs, they will be cited as auxiliary-arcs and 
illustrated by dotted lines. 

In general, if more than two batches of a product are 
to be produced, the redundancy is even more serious. 
For instance, n factorial, practically identical solutions 
can be generated for n batches of a product. An ordering 
on the starting time of the task nodes of the first task of  
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Fig.5 Recipe-graph extended by auxiliary-arcs if n batches of 
the product are to be produced 

 

Fig.6 Recipe-graph extended by auxiliary-arcs in case of 
complex recipe for 2 batches 

the product excludes the unnecessary permutations of 
the batches from consideration. This ordering is 
represented by arcs in the S-graph as Fig.5 illustrates. 
Naturally, the optimal solution of the scheduling 
problem with the additional constraints is also an 
optimal solution of the original problem. If more than 
one initial tasks appear in the recipe of one product, the 
redundancy can be similarly treated (see, e.g., Fig.6). 

The auxiliary-arcs exclude all but one permutations 
of the batches from the search space of the scheduling 
algorithm; nevertheless, further reductions can be 
achieved in certain cases. 

Single equipment unit for a task 

Assume that one equipment unit is available to perform 
a task of a product. In this case, the ordering of the 
starting times of the task nodes of the second task of the 
product must be the same as the ordering of the starting 
times of the task nodes of the first task. Similarly, the 
ordering of the starting times of the task nodes of the 
third task is the same as that of the task nodes of the 
second task, etc. The resultant auxiliary-arcs are shown 
in Fig.7. Since NIS policy is considered, further 
sharpening of the constraints can be achieved. 
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Fig.7 Recipe-graph extended by auxiliary-arcs if one 
equipment unit is available to perform a task of a product 
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Fig.8 Recipe-graph with transformed auxiliary-arcs if one 
equipment unit is available for each task 

An equipment unit assigned to task node (i, j) shown 
in Fig.7 (i-th batch, j-th task) can be reassigned to task 
node (i+1, j) when the activity represented by task node 
(i, j) is performed and the produced material is 
transferred to the equipment unit assigned to node (i, 
j+1). Consequently, the starting point (i, j) of an 
auxiliary-arc can be moved one step forward to (i, j+1) 
as shown in Fig.8. In addition to the exclusion of the 
redundant permutations of the batches, this additional 
transformation of auxiliary-arcs sharpens the bound in 
the procedure of generating the optimal solution 
resulting in additional acceleration. 

A complex recipe can be treated similarly, however, 
if more than one task follow a task in the recipe, an 
auxiliary-arc is established from each of the task nodes 
of the consecutive tasks (see, e.g., Fig.9). 

Optional equipment units for a task with identical 
processing time 

If at least two equipment units are available to perform a 
task, the statement given in the previous section and 
illustrated in Figs.8 and 9 is not valid since a concurrent  
 

 

Fig.9 Recipe-graph with transformed auxiliary-arcs in case of 
a complex recipe for two batches: one equipment unit is 

available for each task 
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Fig.10 Recipe-graph with auxiliary-arcs: multiple equipment 
units are available for a task, their processing times are 

identical 

equipment unit may start the operation of a task earlier 
than the corresponding task is finished in a batch started 
earlier. Nevertheless, if the processing times of all 
equipment units available for a task are identical, there 
is an optimal solution with the property that the order of 
the starting times of the corresponding task nodes of a 
task is the same as the starting times of the task nodes of 
their previous task. This results in auxiliary-arcs, e.g., 
shown in Fig.10 and in Fig.11. 

In general, the combination of cases given in the 
previous and this sections occurs in practice. 
Furthermore, some tasks in the recipe that can be 
performed by multiple equipment units may have 
different processing times. In this case, the initial task 
nodes can be chained with zero weighted arcs as shown 
in Figs.5 and 6, nevertheless, consecutive tasks can be 
chained only if the following two additional properties 
are satisfied. 

(P1) The task can be performed by one equipment 
unit or the task can be performed by multiple 
equipment units with identical processing 
times. 

(P2) All the preceding tasks satisfy property (P1). 

If a task can be performed by a single equipment 
unit, the related auxiliary-arc is transformed as shown in 
Figs.8 and 9. 
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Fig.11 Recipe-graph with auxiliary-arcs for a complex recipe: 
multiple equipment units are available for a task; their 

processing times are identical 
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Fig.12 Recipe-graph of Example 2 
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Fig.13 Recipe-graph of Example 2 with auxiliary-arcs 

Example 2 

For the recipe-graph shown in Fig.12, suppose that 
S1={E1, E2}, S2={E3}, S3={E4, E5}, S4={E1}, and 
S5={E2}. Furthermore, the processing time for the first 
task, i.e., the processing times related to task nodes 1, 6, 
and 11, is independent of the selection of E1 or E2 while 
the processing time of the third task depends on the 
selection of the equipment unit. The first, the second, the 
fourth, and the fifth tasks satisfy property (P1); 
moreover, the first, the second, and the third tasks 
satisfy property (P2). Therefore, the task nodes of the 
first task is to be chained by auxiliary-arcs and the task 
nodes of the second task is to be chained by transformed 
auxiliary-arcs (see Fig.13). 

Program realizations and applications 

The basic framework algorithm that has been published 
in [17] has two main steps: the generation of the recipe-
graph and the branch-and-bound type scheduling 
algorithm based on S-graph (see steps 1 and 3 in 
Fig.14). The present work accelerates the algorithm for 
multiple batches by an additional step, step 2 (see  
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Fig.14 Solution procedure 
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Fig.15 Recipe-graph of Example 3 for four batches 

Fig.14). The algorithm has been realized in C++, its 
demonstration version is available at 
http://www.dcs.vein.hu/demo/hjic together with 
illustrative examples. Although the acceleration tool of 
the present work has been developed for the S-graph 
framework, it is not specific to S-graphs and, therefore, 
can be fitted to other scheduling algorithms. 

Example 3 

This example is introduced by Sanmartí et al. [17]; four 
equipment units, E1, E2, E3, and E4, are available to 
generate four products, A, B, C, and D. The recipes of 
the products are given in Fig.15. The basic algorithm 
and its acceleration have been compared by solving this 
example with different number of batches per products; 
the results are shown in Table 1. 

Example 4 

This example is introduced by Voudouris and 
Grossmann [18]. Five equipment units (stages), E1, E2, 
E3, E4, and E5, are available to generate four products, 
A, B, C, and D. The recipes of the products are given in 
Fig.16. 

The basic algorithm and its acceleration have been 
compared by solving this example with different number 
of batches per products, the results are shown in Table 2 
(solved by PC-Pentium 667 MHz). For more than eleven 
batches the basic algorithm did not arrive at the optimal 
solution in reasonable time (in several hours). 
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Table 1 Comparison of the algorithms in generating an optimal solution 

Number of batches 

A B C D 

Basic algorithm 
[Sanmartí et al. [17]] 

CPU time (s)* 

Accelerated algorithm 
[present work] 
CPU time (s)* 

Acceleration 
ratio 

1 1 1 1 0.17 0.17 1 

2 1 1 1 2.42 1.26 1.92 

2 2 1 1 11.54 3.02 3.82 

2 2 2 1 142.11 20.76 6.85 

2 2 2 2 3019.86 81.72 36.95 

3 2 2 2 N/A 329.5 N/A 

3 3 2 2 N/A 1169.04 N/A 

3 3 3 2 N/A 6577.11 N/A 

*PC-Pentium 667 MHz 

Table 2 Comparison of the algorithms in generating an optimal solution 

Number of batches 

A B C D 

Base algorithm 
[Sanmartí et al. [17]] 

CPU time (s)* 

Accelerated algorithm 
[present work] 
CPU time (s)* 

Acceleration 
ratio 

1 1 1 1 0.17 0.17 1 

2 1 1 1 0.55 0.45 1.22 

2 2 1 1 0.55 0.22 2.5 

2 2 2 1 15.71 3.63 4.32 

2 2 2 2 72.22 6.59 10.96 

3 2 2 2 309.06 12.32 23.2 

3 3 2 2 72.83 6.71 10.85** 

3 3 3 2 26827.26 72.56 369.73 

3 3 3 3 N/A 233.61 N/A 

4 3 3 3 N/A 390.08 N/A 

4 4 3 3 N/A 161.59 N/A 

4 4 4 3 N/A 2530.26 N/A 

4 4 4 4 N/A 7579.39 N/A 

*PC-Pentium 667 MHz 
**Instance solved by Voudouris and Grossmann [18] 
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Fig.16 Recipe-graph of Example 4 for four batches 

Note that, the running time of the algorithm is not 
necessarily monotonic with the number of batches, as 
shown in Table 2, since the number of batches may 
affect the structure of the problem that may make a 
smaller problem more complex in some cases. 

 

Fig.17 Recipe-graph of Example 5 for two batches 

Voudouris and Grossmann [18] published the result 
of the case 3, 3, 2, and 2 batches of products A, B, C, 
and D, respectively with 293 second running time using 
GAMS 2.25/Sciconic 2.11 on an IBM/R6000/Power 
530 workstation (see the highlighted row of Table 2 for 
comparison). 
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Table 3 Comparison of the algorithms in generating an optimal solution 

Number of batches 

A B 

Base algorithm 
[Sanmartí et al. [17]] 

CPU time (s)* 

Accelerated algorithm 
[present work] 
CPU time (s)* 

Acceleration 
ratio 

1 1 0.06 0.06 1 

2 1 0.16 0.11 1.45 

2 2 0.38 0.27 1.4 

3 2 1.26 0.49 2.57 

3 3 6.76 0.93 7.27 

4 3 46.09 1.59 28.99 

4 4 386.51 2.96 130.58 

5 4 3632.72 5.11 710.9 

5 5 41667.74 9.94 4191.93 

6 5 N/A 17.81 N/A 

6 6 N/A 36.74 N/A 

7 6 N/A 68.01 N/A 

7 7 N/A 144.46 N/A 

8 7 N/A 273.48 N/A 

8 8 N/A 565.68 N/A 

*PC-Pentium 667 MHz 

Example 5 

Two products (product A and B) are to be produced 
according to recipe given in Fig.17. Si (i=1,2,..., 9) 
denotes the set of those equipment units that can 
perform task i. The sets are specified as S1={E1}, 
S2={E2}, S3={E3}, S4={E4}, S5={E1}, S6={E2}, 
S7={E3}, S8={E4}, and S9={E5}. Table 3 shows the 
result for different number of batches. 

Concluding remarks 

By eliminating redundant solutions, additional 
combinatorial constraints may drastically reduce the 
search space of optimal scheduling of batch processes 
for generating multiple batches of the products. This 
type of scheduling problems can be solved more 
effectively with these additional constraints as its 
applications show for the S-graph based scheduling 
methodology. 
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