

Correspondence concerning this article should be addressed to F. Friedler (friedler@dcs.vein.hu)

HUNGARIAN JOURNAL
OF INDUSTRIAL CHEMISTRY

VESZPRÉM
Vol. 30. pp. 305 - 312 (2002)

SCHEDULING OF MULTIPURPOSE BATCH PROCESSES WITH MULTIPLE
BATCHES OF THE PRODUCTS

T. HOLCZINGER, J. ROMERO
1, L. PUIGJANER

1
 and F. FRIEDLER

(Department of Computer Science, University of Veszprém,
Veszprém, Egyetem u. 10, H-8200, HUNGARY

1Chemical Engineering Department, Universitat Politècnica de Catalunya,
E.T.S.E.I.B., Diagonal 647, E-08028 Barcelona, SPAIN)

Received: December 12, 2002

Optimal scheduling of batch processes becomes excessively complex if large number of batches of the products has to be
generated. In most cases, however, the search space of the optimization procedure can be drastically reduced by
eliminating the redundant solutions through additional combinatorial constraints. The proposed approach that generates
these additional constraints is described here for a graph-theoretical method for batch process scheduling, nevertheless, it
can be conveniently embedded into other methods developed for optimal scheduling.

Keywords: multipurpose batch plants, multiple batches, optimal scheduling, S-graph, search space reduction

Introduction

In multipurpose plants, a variety of production resources
(raw materials, equipment, utilities, manpower) are
shared by a number of processing operations that
manufacture several products. The types of operations
involved can vary from continuous to batch, a fact that
given the inherent flexibility of such types of plants,
leads to complex scheduling problems.

The problem of short-term scheduling of batch plants
seeks to determine the optimal strategy for satisfying the
production demand of a variety of products at specific
dates and/or at the end of a given production horizon.
The short-term scheduling is specially relevant for
flexible production networks (multipurpose plants),
where the production of individual batches, even for the
same product, does not follow the same pattern but must
be specified according to an overall performance index
and is subject to capacity and time constraints. It
involves the allocation of equipment and resources to
orders, the sequences of these orders and the route
determination of the material flows through the plant.

Short-term scheduling of multipurpose batch plants
has received considerable attention over the past two
decades. Many diverse approaches, mathematical
formulations and solution algorithms have been
proposed. Recent reviews can be found in [1-4].

A major question in any scheduling algorithm deals
with the time problem representation. Kondili et al. [5]
present a formulation to the modeling of a series of
scheduling problems that arises in batch plants, namely
the State Task Network (STN). This representation is
based on a uniform time discretization and on the
assumption that events only happen at the boundaries of
these intervals, which implies the generation of a large
number of integer variables in problems of industrial
relevance. The computational effort has been reduced by
reformulating the allocation constants [6] or by heuristic
decomposition [7]. These improvements have
encouraged recent work toward the development of
efficient methods of comparable generality based on the
continuous-time representation, which was first
introduced by Sahinidis and Grossmann [8].

The Resource-Task-Network (RTN) representation
proposed by Pantelides [9] was the basis for a
continuous time formulation by Zang and Sargent [10].
Later, Shilling and Pantelides [11] presented a simpler
RTN formulation. However, the resulting MILP
problem is still very cumbersome to solve.

Otherwise, an approach that has been traditionally
used is based on a graph representation combined with a
branch and bound method. These techniques for the case
of scheduling, known as edge finding methods [12-14]
have proved to be very effective for solving special
types of job shop scheduling problems. An extensive

 306

computational study of the problem was also performed
by Applegate and Cooke [15], in which the authors
develop heuristics for finding feasible schedules, cutting
planes for obtaining lower bounds and a specialized
branch and bound method. Very recently, a new graph
representation called S-graph, appropriate for
combinatorial algorithms, has been introduced [16, 17].
Once all process tasks are represented in a recipe-graph,
an appropriate search strategy permits to generate the S-
graph of the optimal schedule effectively, i.e., a drastic
reduction of computation time can be achieved
compared to mathematical programming solution
techniques. In this paper, the properties of scheduling
problems are further exploited by embedding an
additional acceleration tool in the solver, which results
in an increased computational efficiency needed in the
solution of large scheduling and re-scheduling problems.

S-graph representation

The present work is based on the S-graph representation
[16] and a corresponding general framework [17] that
can solve different types of production scheduling
problems. In this framework, a node (so-called task
node) is assigned to each task given in the recipe for
producing a single batch of a product or products. An
additional node (so-called product node) is introduced
for each product for technical reasons. It is supposed
that there is at least one equipment unit to perform each
task; set Si denotes the set of those equipment units that
can perform the task represented by task node i. The
processing orders of the tasks are given by weighted
arcs (so-called recipe-arcs) of the graph. The processing
time of a task may be different for different equipment
units. In this case, the weight of the recipe-arc is the
minimum of the processing times of the plausible
equipment units. In this representation, the value
assigned to an arc expresses a lower bound for the
difference of the starting times of the two related tasks.
The resultant graph is the recipe-graph for the single
batch production. For generating multiple batches of the
products, the appropriate part of this S-graph is repeated
according to the number of batches to get the recipe-
graph of multiple batches.

An S-graph can represent both non-intermediate
storage (NIS) and unlimited intermediate storage (UIS)
policies appropriately. For the former, let τj denote the
set of those tasks that follow task j according to the
recipe. If equipment unit Ei is assigned to task j and
consecutively to task k, then, a zero weighted arc (or an
arc whose weight is equal to the length of the
changeover time if applicable), called schedule-arc, is
established from each element of τj to k. For example, 2-
6 is the task sequence of equipment unit E1 shown in
Fig.1. In this example, E1 is assigned to tasks 2 and 6
and zero weighted arcs are established from the tasks
that follow task 2 (τj={3,4}) to task 6 (consecutive task
of task 2). If UIS policy is applied in any part of the
scheduling problem or globally for the whole problem,

 1
S1

2
E1

3
S3 8

4
S4 9

5
S5

6
E1

7
S7 10

A

C

B

6
9

9

7

17

14
16 8

0
0

Fig.1 S-graph representation of task sequence 2-6 for
equipment unit E1 with NIS policy

the introduction of an additional node or nodes for the
"unlimited" storage unit or units transforms the policy of
the problem to NIS. In the following, only the NIS policy
will be considered.

Formally, directed graph G can be given as a pair
),(AN where N is a finite set, the set of nodes, and A is

a set of pairs of nodes identifying the arcs of the graph
(i.e., NNA ×⊆). In an S-graph, two classes of arcs, the
so-called recipe-arcs and schedule-arcs are specified.
Therefore, an S-graph is given in the form of

),,(21 AANG , where N, A1, and A2 denote the sets of

nodes, recipe-arcs, and schedule-arcs, respectively. It is
supposed that NNA ×⊆1 , NNA ×⊆2 , and

∅=∩ 21 AA ; furthermore, a nonnegative value,),(jic ,

assigned to each arc, denotes the weight of the arc),(ji .

In practice, if an arc is established from node i to node j,
i.e., 21),(AAji ∪∈ , then it is supposed that the task

corresponding to node j cannot start its activity earlier
than),(jic time after the task corresponding to node i

started.

Multiple batches of a product

A simple way of describing the multipurpose scheduling
problems with more than one batch of the products is by
considering each batch as an individual product. Even
though the basic algorithm published in [17] can be used
directly for solving this simplistic model, it is not
necessarily efficient enough if the number of batches of
the same product is excessively large. Embedding
additional tools into the basic algorithm, however, may
result in a sufficient acceleration for solving large-scale
problems. First, a simple example will illustrate the
source of inefficiency to be overcome by the embedded
tools.

Example 1

Suppose that two batches of product A and one batch of
product B are to be produced. Product A is produced in
three consecutive steps that can be performed by any
element of the sets of equipment units S1, S2, and S3,
respectively. Product B is produced in two consecutive
steps, where the first step and second step can be
performed by any equipment unit given in sets S4 and

 307

Fig.2 Recipe-graph of Example 1

Product A

Product B

1
2 7

4
5

3 6

4
5

6

1
2

3

7

8

8

E1
E2
E3

E1
E2
E3

Fig.3 Two technically identical schedules

Fig.4 Recipe-graph of Example 1 extended by an auxiliary-arc
expressing the order of the two batches of product A

S5, respectively. The recipe-graph of this example is
given in Fig.2.

It is assumed that equipment units E1, E2, and E3
are in sets S1, S2∩S4, and S3∩S5, respectively. Two
technically identical schedules are shown in Fig.3; only
one of them should be considered, even though both of
them are generated by the basic algorithm.

As far as the example illustrates, the source of
inefficiency is the possibility of generating different
orders of technically identical batches. This redundancy
in the set of solutions can, however, be eliminated by
additional constraints. For example, if it is supposed that
the activity denoted by task node 4 cannot start before
the starting time of the activity denoted by task node 1,
redundancy appearing in Fig.3 is excluded. This
constraint can be conveniently represented by an
additional arc from node 1 to 4 in the S-graph (see
Fig.4). Note that, the additional arc or arcs to exclude
redundant solutions are not considered as recipe-arcs or
schedule-arcs, they will be cited as auxiliary-arcs and
illustrated by dotted lines.

In general, if more than two batches of a product are
to be produced, the redundancy is even more serious.
For instance, n factorial, practically identical solutions
can be generated for n batches of a product. An ordering
on the starting time of the task nodes of the first task of

… … …

…

…

…

…

…

…

1,1

2,1

3,1

(n-1),
1

n,1

1,2

2,2

3,2

(n-1),
2

n,2

1,m1,
(m-1)

2,
(m-1)

3,
(m-1)

(n-1),
(m-1)

n,
(m-1)

2,m

3,m

(n-1),
m

n,m

Fig.5 Recipe-graph extended by auxiliary-arcs if n batches of
the product are to be produced

Fig.6 Recipe-graph extended by auxiliary-arcs in case of
complex recipe for 2 batches

the product excludes the unnecessary permutations of
the batches from consideration. This ordering is
represented by arcs in the S-graph as Fig.5 illustrates.
Naturally, the optimal solution of the scheduling
problem with the additional constraints is also an
optimal solution of the original problem. If more than
one initial tasks appear in the recipe of one product, the
redundancy can be similarly treated (see, e.g., Fig.6).

The auxiliary-arcs exclude all but one permutations
of the batches from the search space of the scheduling
algorithm; nevertheless, further reductions can be
achieved in certain cases.

Single equipment unit for a task

Assume that one equipment unit is available to perform
a task of a product. In this case, the ordering of the
starting times of the task nodes of the second task of the
product must be the same as the ordering of the starting
times of the task nodes of the first task. Similarly, the
ordering of the starting times of the task nodes of the
third task is the same as that of the task nodes of the
second task, etc. The resultant auxiliary-arcs are shown
in Fig.7. Since NIS policy is considered, further
sharpening of the constraints can be achieved.

 308

… … …

…

…

…

…

…

…

1,1

2,1

3,1

(n-1),
1

n,1

1,2

2,2

3,2

(n-1),
2

n,2

1,m1,
(m-1)

2,
(m-1)

3,
(m-1)

(n-1),
(m-1)

n,
(m-1)

2,m

3,m

(n-1),
m

n,m

Fig.7 Recipe-graph extended by auxiliary-arcs if one
equipment unit is available to perform a task of a product

… … …

…

…

…

…

…

…
1,1

2,1

3,1

(n-1),
1

n,1

1,2

2,2

3,2

(n-1),
2

n,2

1,m1,
(m-1)

2,
(m-1)

3,
(m-1)

(n-1),
(m-1)

n,
(m-1)

2,m

3,m

(n-1),
m

n,m

Fig.8 Recipe-graph with transformed auxiliary-arcs if one
equipment unit is available for each task

An equipment unit assigned to task node (i, j) shown
in Fig.7 (i-th batch, j-th task) can be reassigned to task
node (i+1, j) when the activity represented by task node
(i, j) is performed and the produced material is
transferred to the equipment unit assigned to node (i,
j+1). Consequently, the starting point (i, j) of an
auxiliary-arc can be moved one step forward to (i, j+1)
as shown in Fig.8. In addition to the exclusion of the
redundant permutations of the batches, this additional
transformation of auxiliary-arcs sharpens the bound in
the procedure of generating the optimal solution
resulting in additional acceleration.

A complex recipe can be treated similarly, however,
if more than one task follow a task in the recipe, an
auxiliary-arc is established from each of the task nodes
of the consecutive tasks (see, e.g., Fig.9).

Optional equipment units for a task with identical
processing time

If at least two equipment units are available to perform a
task, the statement given in the previous section and
illustrated in Figs.8 and 9 is not valid since a concurrent

Fig.9 Recipe-graph with transformed auxiliary-arcs in case of
a complex recipe for two batches: one equipment unit is

available for each task

… … …

…

…

…

…

…

…

1,1

2,1

3,1

(n-1),
1

n,1

1,2

2,2

3,2

(n-1),
2

n,2

1,m1,
(m-1)

2,
(m-1)

3,
(m-1)

(n-1),
(m-1)

n,
(m-1)

2,m

3,m

(n-1),
m

n,m

Fig.10 Recipe-graph with auxiliary-arcs: multiple equipment
units are available for a task, their processing times are

identical

equipment unit may start the operation of a task earlier
than the corresponding task is finished in a batch started
earlier. Nevertheless, if the processing times of all
equipment units available for a task are identical, there
is an optimal solution with the property that the order of
the starting times of the corresponding task nodes of a
task is the same as the starting times of the task nodes of
their previous task. This results in auxiliary-arcs, e.g.,
shown in Fig.10 and in Fig.11.

In general, the combination of cases given in the
previous and this sections occurs in practice.
Furthermore, some tasks in the recipe that can be
performed by multiple equipment units may have
different processing times. In this case, the initial task
nodes can be chained with zero weighted arcs as shown
in Figs.5 and 6, nevertheless, consecutive tasks can be
chained only if the following two additional properties
are satisfied.

(P1) The task can be performed by one equipment
unit or the task can be performed by multiple
equipment units with identical processing
times.

(P2) All the preceding tasks satisfy property (P1).

If a task can be performed by a single equipment
unit, the related auxiliary-arc is transformed as shown in
Figs.8 and 9.

 309

Fig.11 Recipe-graph with auxiliary-arcs for a complex recipe:
multiple equipment units are available for a task; their

processing times are identical

1
S1

6
S1

11
S1

2
S2

7
S2

12
S2

3
S3

8
S3

13
S3

4
S4

5
S5

16

17

18

9
S4

10
S4

14
S4

15
S4

Fig.12 Recipe-graph of Example 2

1
S1

6
S1

11
S1

2
S2

7
S2

12
S2

3
S3

8
S3

13
S3

4
S4

5
S5

16

17

18

9
S4

10
S4

14
S4

15
S4

Fig.13 Recipe-graph of Example 2 with auxiliary-arcs

Example 2

For the recipe-graph shown in Fig.12, suppose that
S1={E1, E2}, S2={E3}, S3={E4, E5}, S4={E1}, and
S5={E2}. Furthermore, the processing time for the first
task, i.e., the processing times related to task nodes 1, 6,
and 11, is independent of the selection of E1 or E2 while
the processing time of the third task depends on the
selection of the equipment unit. The first, the second, the
fourth, and the fifth tasks satisfy property (P1);
moreover, the first, the second, and the third tasks
satisfy property (P2). Therefore, the task nodes of the
first task is to be chained by auxiliary-arcs and the task
nodes of the second task is to be chained by transformed
auxiliary-arcs (see Fig.13).

Program realizations and applications

The basic framework algorithm that has been published
in [17] has two main steps: the generation of the recipe-
graph and the branch-and-bound type scheduling
algorithm based on S-graph (see steps 1 and 3 in
Fig.14). The present work accelerates the algorithm for
multiple batches by an additional step, step 2 (see

Extension of the
recipe-graph with auxiliary-arcs

Generation
of the recipe-graph

Input (recipe,
number of batches)

Solution(s)

Scheduling algorithm
based on S-graph

1

2

3

Fig.14 Solution procedure

1
E1

4
E2

6

9

8

7

9

15

14

11

7

17

16

4

7
E4

10
E2

2
E3

5
E3

8
E1

11
E3

3
E4

6
E4

9
E2

12
E1

13 A

B

C

D

14

15

16

Fig.15 Recipe-graph of Example 3 for four batches

Fig.14). The algorithm has been realized in C++, its
demonstration version is available at
http://www.dcs.vein.hu/demo/hjic together with
illustrative examples. Although the acceleration tool of
the present work has been developed for the S-graph
framework, it is not specific to S-graphs and, therefore,
can be fitted to other scheduling algorithms.

Example 3

This example is introduced by Sanmartí et al. [17]; four
equipment units, E1, E2, E3, and E4, are available to
generate four products, A, B, C, and D. The recipes of
the products are given in Fig.15. The basic algorithm
and its acceleration have been compared by solving this
example with different number of batches per products;
the results are shown in Table 1.

Example 4

This example is introduced by Voudouris and
Grossmann [18]. Five equipment units (stages), E1, E2,
E3, E4, and E5, are available to generate four products,
A, B, C, and D. The recipes of the products are given in
Fig.16.

The basic algorithm and its acceleration have been
compared by solving this example with different number
of batches per products, the results are shown in Table 2
(solved by PC-Pentium 667 MHz). For more than eleven
batches the basic algorithm did not arrive at the optimal
solution in reasonable time (in several hours).

 310

Table 1 Comparison of the algorithms in generating an optimal solution

Number of batches

A B C D

Basic algorithm
[Sanmartí et al. [17]]

CPU time (s)*

Accelerated algorithm
[present work]
CPU time (s)*

Acceleration
ratio

1 1 1 1 0.17 0.17 1

2 1 1 1 2.42 1.26 1.92

2 2 1 1 11.54 3.02 3.82

2 2 2 1 142.11 20.76 6.85

2 2 2 2 3019.86 81.72 36.95

3 2 2 2 N/A 329.5 N/A

3 3 2 2 N/A 1169.04 N/A

3 3 3 2 N/A 6577.11 N/A

*PC-Pentium 667 MHz

Table 2 Comparison of the algorithms in generating an optimal solution

Number of batches

A B C D

Base algorithm
[Sanmartí et al. [17]]

CPU time (s)*

Accelerated algorithm
[present work]
CPU time (s)*

Acceleration
ratio

1 1 1 1 0.17 0.17 1

2 1 1 1 0.55 0.45 1.22

2 2 1 1 0.55 0.22 2.5

2 2 2 1 15.71 3.63 4.32

2 2 2 2 72.22 6.59 10.96

3 2 2 2 309.06 12.32 23.2

3 3 2 2 72.83 6.71 10.85**

3 3 3 2 26827.26 72.56 369.73

3 3 3 3 N/A 233.61 N/A

4 3 3 3 N/A 390.08 N/A

4 4 3 3 N/A 161.59 N/A

4 4 4 3 N/A 2530.26 N/A

4 4 4 4 N/A 7579.39 N/A

*PC-Pentium 667 MHz
**Instance solved by Voudouris and Grossmann [18]

1
E1

4
E1

8

7

6

4

5

3

9

6

3

4

3

4

7
E2

10
E2

2
E4

5
E3

8
E4

11
E3

3
E5

6
E5

9
E5

12
E5

13 A

B

C

D

14

15

16

Fig.16 Recipe-graph of Example 4 for four batches

Note that, the running time of the algorithm is not
necessarily monotonic with the number of batches, as
shown in Table 2, since the number of batches may
affect the structure of the problem that may make a
smaller problem more complex in some cases.

Fig.17 Recipe-graph of Example 5 for two batches

Voudouris and Grossmann [18] published the result
of the case 3, 3, 2, and 2 batches of products A, B, C,
and D, respectively with 293 second running time using
GAMS 2.25/Sciconic 2.11 on an IBM/R6000/Power
530 workstation (see the highlighted row of Table 2 for
comparison).

 311

Table 3 Comparison of the algorithms in generating an optimal solution

Number of batches

A B

Base algorithm
[Sanmartí et al. [17]]

CPU time (s)*

Accelerated algorithm
[present work]
CPU time (s)*

Acceleration
ratio

1 1 0.06 0.06 1

2 1 0.16 0.11 1.45

2 2 0.38 0.27 1.4

3 2 1.26 0.49 2.57

3 3 6.76 0.93 7.27

4 3 46.09 1.59 28.99

4 4 386.51 2.96 130.58

5 4 3632.72 5.11 710.9

5 5 41667.74 9.94 4191.93

6 5 N/A 17.81 N/A

6 6 N/A 36.74 N/A

7 6 N/A 68.01 N/A

7 7 N/A 144.46 N/A

8 7 N/A 273.48 N/A

8 8 N/A 565.68 N/A

*PC-Pentium 667 MHz

Example 5

Two products (product A and B) are to be produced
according to recipe given in Fig.17. Si (i=1,2,..., 9)
denotes the set of those equipment units that can
perform task i. The sets are specified as S1={E1},
S2={E2}, S3={E3}, S4={E4}, S5={E1}, S6={E2},
S7={E3}, S8={E4}, and S9={E5}. Table 3 shows the
result for different number of batches.

Concluding remarks

By eliminating redundant solutions, additional
combinatorial constraints may drastically reduce the
search space of optimal scheduling of batch processes
for generating multiple batches of the products. This
type of scheduling problems can be solved more
effectively with these additional constraints as its
applications show for the S-graph based scheduling
methodology.

Acknowledgement

This project has been financially supported in part by
the Hungarian National Science Foundation OTKA T-
029-309 and by the MCyT (Project No. OCCASSION:
DPI2002-00856).

REFERENCES

1. PINTO J. M. and GROSSMANN I. E.: Ind. Eng. Chem.
Res., 1995, 34, 3037

2. SHAH N.: Single-and Multisite Planning and
Scheduling: Current Status and Future Challenges,
Foundations of Computer-Aided Process
Operations. AIChE Symposium Series No.320.
(Eds. Joseph F. Pekny and Gary E. Blau), American
Institute of Chemical Engineers (AIChE), New
York, 94, 75, 1998

3. PEKNY J. and REKLAITIS G. V.: Towards the
Convergence of Theory and Practice: A Technology
Guide for Scheduling /Planning Methodology,
Foundations of Computer-Aided Process
Operations. AIChE Symposium Series No.320.
(Eds. Joseph F. Pekny and Gary E. Blau), American
Institute of Chemical Engineers (AIChE), New
York, 94, 91, 1998

4. PUIGJANER L.: Computers Chem. Engng., 1999,
23S, S929

5. KONDILI E. C., PANTELIDES C. C. and SARGENT R.
W. H.: A General Algorithm for Scheduling of
Batch Operations, Proc. 3rd Intl. Symp. On Process
Systems Engng., Sydney, Australia, 62-75, 1988

6. SHAH N., PANTELIDES C. C. and SARGENT R. W.
H.: Computers Chem. Engng., 1993, 17, 229

7. ELKAMEL A.: Scheduling of Process Operations
using Mathematical Programming Techniques, PhD
Thesis, Purdue University, 1993

8. SAHINIDIS N. V., GROSSMANN I. E., FORNARI R. E.
and CHATHRATHI M.: Computer Chem. Engng.,
1991, 15, 255

9. PANTELIDES C. C.: Unified Frameworks for Optimal
Process Planning and Scheduling, Proceedings of

 312

the Second Conference on Foundations of Computer
Aided Operations (FOCAPOII), 235-274, 1994

10. ZANG, X and SARGENT R. W. H.: Computers Chem.
Engng., 1996, S20, S1287-S1292

11. SCHILLING G. and PANTELIDES C. C.: Computers
Chem. Engng., 1996, S20, S1221

12. ADAMS J., BALAS E. and ZAWACK D.: Management
Science, 1998, 34, 391-401

13. CARLIER J. and PINSON E.: Management Science,
1989, 35, 164-176

14. CORMEN T. H., LEISERSON C. E. and RIVEST R. L.:
Introduction to algorithms, The MIT Press, 1997

15. APPLEGATE D. and COOKE W.: ORSA Journal of
Computing, Spring, 1991, 3(2), 149-156

16. SANMARTÍ E., FRIEDLER F. and PUIGJANER L.:
Computers chem. Engng., 1998, 22, S847-S850

17. SANMARTÍ E., HOLCZINGER T., PUIGJANER L. and,
FRIEDLER F.: AIChE Journal, 2002, 48(11), 2557-
2570

18. VOUDOURIS V. T. and GROSSMANN I. E.:
Computers chem. Engng., 1994, 20(11), 1335-1360

