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Z. Kovács a,c, Z. Ercsey a, F. Friedler a,b,*, L.T. Fan b

a Department of Computer Science, Uni6ersity of Veszprém, Veszprém, Egyetem u. 10., H-8200, Hungary
b Department of Chemical Engineering, Kansas State Uni6ersity, Manhattan, KS 66506, USA
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Abstract

The available algorithmic methods often fail to yield with certainty the global optima in solving even a relatively simple class
of separation-network synthesis problem for which the cost functions are considered to be linear. This is attributable to two
complications; firstly the super-structures on which the solutions are based are incomplete; and the secondly, the mathematical
programming models derived for the problems are unnecessarily cumbersome. To circumvent these complications, a novel method
is proposed here to generate the complete super-structure and the corresponding mathematical programming model necessary for
the separation-network synthesis problem with linear cost function. The efficacy of the proposed method is demonstrated by
re-examining four published problems for which the optima obtained are claimed to be global. For all the problems re-examined,
the costs of the solutions resulting from the present method are the same or as much as 30% lower than those of the published
solutions. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The optimal solution of a separation-network synthe-
sis (SNS) problem requires an appropriate mathemati-
cal programming model and a global optimization
method; solving the former by the latter gives rise to
the optimal solution of the original problem. Appar-
ently, no method is available for exactly constructing
such a model although some effective global optimiza-
tion methods have become available recently.

Various unexpected optimal solutions obtained for
some simple classes of SNS problems illustrate the
difficulty involved in generating a valid mathematical
programming model for a process-synthesis problem in
general and for a SNS problem in particular (see e.g.
Kovács, Friedler & Fan, 1993; Kovács, Ercsey, Friedler
& Fan, 1998). The present paper proposes an efficient

method to resolve this situation; specifically, it focuses
on the solution of a relatively simple class of SNS
problems for which the cost functions of the operating
units are linear without fixed charges. Unlike the avail-
able algorithmic methods not involving model genera-
tion for synthesis, the proposed method solves
algorithmically every step from the model generation to
the optimal solution. The model generation is carried
out by a novel systematic technique; moreover, the
resultant model is rigorously verified. The efficacy of
the present method is illustrated with published exam-
ples for ease of comparison.

2. Rigorous super-structure

First, an outline is given of the basic requirements for
an algorithmic process-synthesis method and of the
concomitant super-structure. This is followed by the
mathematical definition of the latter and a description
of an approach for systematically generating it.
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2.1. Super-structure

An algorithmic method of SNS should comprise two
major steps: (i) The construction of a mathematical
model involving the generation of both the complete
network structure, i.e. super-structure, and the corre-
sponding mathematical programming model; and (ii)
the solution of the resultant mathematical program-
ming model, i.e. the determination of the optimal struc-
ture by means of an optimization method. If the
mathematical programming model is obtained from an
incomplete network structure, it may not yield the
optimal solution regardless of the optimization method
adopted. In principle, the super-structure may be gener-
ated if all potentially optimal structures are known
either explicitly or implicitly. Practically speaking, how-
ever, this super-structure is unnecessary, if all the po-
tentially optimal structures are explicitly known.
Nevertheless, generating them can be exceedingly
difficult since the number of different structures that
need to be taken into account in solving the problem
can be excessive even for the simplest class of problems
(see e.g. Thompson & King, 1972). It is, therefore,
essential that an algorithm be available for generating
the super-structure from the potentially optimal struc-
tures that are given only implicitly (see e.g. Friedler,
Tarján, Huang & Fan, 1993).

Two vital aspects have long been neglected in solving
the problems of separation-network synthesis on the
basis of the super-structure. These are: (i) the failure to
define mathematically the super-structure; and (ii) the
failure to establish a method of analysis to determine if
any specific super-structure contains the optimal struc-
tures for all instances of a given class of SNS problems.
To mitigate these deficiencies, the definition of the
rigorous super-structure is introduced below.

Definition. Let a set of operating units and the mathe-
matical model of each operating unit be given. More-
over, a systematic procedure is presumed to be
available so that a valid mathematical programming
model can be generated for a network of the given
operating units. Then, this network is deemed to be a
rigorous super-structure for a class of process-synthesis
problems if the optimality of the resultant solution
cannot be improved for any instance of the class of
problems by any other network of operating units and
model generation procedure.

The term, rigorous super-structure, is coined to dis-
tinguish it from the super-structure which hitherto lacks
an exact definition. The optimal solution, therefore, can
now be determined with certainty if the mathematical
programming model is generated from this rigorous
super-structure, and the solution procedure is capable
of solving the model. In other words, the generation of

the rigorous super-structure should be the first critical
step of SNS.

A rigorous super-structure is not unique since two
different super-structures may lead to an identical opti-
mal solution for any instance of a class of SNS prob-
lems. One of the reasons is the following. Suppose that
a rigorous super-structure includes every potentially
optimal structure for each instance of a given class of
SNS problems; then, every other structure containing
this rigorous super-structure also contains every poten-
tially optimal structure. Even for a simple class of SNS
problems, it is difficult to determine the rigorous super-
structure containing only those operating units and
linkages belonging to the optimal structure for at least
one instance.

2.2. Rigorous super-structure generation for a class of
SNS problems

Since the rigorous super-structure may depend on the
type of cost functions of the operating units, we limit
our consideration to the following specific class of SNS
problems.

A set of multicomponent product-streams is to be
generated from multicomponent feed-streams by a net-
work of separators, dividers, and mixers. The models
and cost functions of the operating units are as follows:

The components of the streams are in a ranked list,
which remains invariant over the entire separation pro-
cess. Let n be the number of components considered in
the separation-network synthesis problem; then, a
stream is represented by an n-vector of nonnegative real
numbers. It is assumed that the vector representing a
feed-stream of the synthesis problem does not contain
zero elements between nonzero elements. The number
of components of a feed-stream is k, if the number of
nonzero elements of the vector representing it is k.
Separator Si performs a sharp separation between com-
ponents i and (i+1) of its inlet stream, i.e. if its inlet
stream contains components 1 through n, then its top
outlet stream contains components 1 through i, and its
bottom outlet stream, components (i+1) through n. If
more than one separator of an identical type appear in
the network of interest, they are distinguishable by their
subscripts. To facilitate the comparison with the earlier
works, the cost of a separator is assumed to be its mass
load multiplied by the degree of difficulty of the separa-
tion; and the overall cost of the separation-network, to
be the sum of the costs of individual separators in the
network. In addition, the cost of the dividers and
mixers in the separation-network are regarded zero
because their contribution to the overall cost is negligi-
ble: they are far less costly than the separators. This
type of model has been adopted by several authors, e.g.
Floudas (1987), Wehe and Westerberg (1987) and Que-
sada and Grossmann (1995).
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Fig. 1. Algorithm SNS-LMSG.

To ascertain that a super-structure contains only the
necessary operating units and linkages, SNS problems
must be examined from the structural point of view.
This may lead to the determination of basic structural
properties of potentially optimal structures. The follow-
ing theorem plays a key role in generating a rigorous
super-structure to the specific class of SNS problems
under consideration.

Theorem 1. There exists a loopless optimal network for
any separation-network synthesis problem with simple
and sharp separators, di6iders, and mixers, where the cost
of a network is the sum of the separators’ costs, each of
which is proportional to its mass load (see Appendix A
for the proof ).

A rigorous super-structure for the class of SNS prob-
lems described above can be generated by algorithm
SNS-LMSG derivated from Theorem 1 (see Fig. 1). A
step-by-step illustration of the algorithm is given in
Appendix B. The rigorous super-structure is formed
from the structure generated for each feed-stream as
follows:

As an initialization of the algorithm, a divider is
created to every feed-stream, and each feed-stream is
linked with the corresponding divider; moreover, a
mixer is created to each product-stream, and the outlet
stream from the mixer is linked with the corresponding
product-stream. Then, the algorithm considers every
divider generated in the structure. One of all types of
separators performing a separation between any pair of
adjacent components in the inlet stream to the divider
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is created, and an outlet stream from the divider is
linked with the separators created. Subsequently, di-
viders are created for each outlet stream of the separa-
tors created. Moreover, outlet streams from the divider
under consideration are linked to the mixers of the
product-streams if plausible. This procedure is repeated
until every divider is processed, i.e. single component
streams are produced from the feed-stream and by-
passed to the product-streams. In other words, any
stream is linked to every separator performing a separa-
tion on this stream; moreover, it is also linked to the
mixers assigned to those product-streams that contain
every component of the stream; obviously, no other
connection is needed. This can be visualized through
the following: a separator performing no separation on
the given stream; connecting it to the network simply
increases the cost of the overall network. Note that
mixers are assigned only to product-streams (see the
corollary of Theorem 1 in Appendix A).

Theorem 2. Algorithm SNS-LMSG generates a rigorous
super-structure for any SNS problem with simple and
sharp separators, di6iders and mixers in a finite number
of steps where the cost of a network is the sum of the
separators’ costs, each of which is proportional to its
mass load (see Appendix A for the proof ).

3. Mathematical programming model

The mathematical programming model derived from
the rigorous super-structure should be as simple as
possible without impairing the optimality of the resul-
tant solution. In any of the available algorithmic meth-
ods for SNS, the model derived leads to a nonlinear
mathematical programming problem even when the
objective function is linear (see, e.g. Quesada & Gross-
mann, 1995). This nonlinear programming model is
formulated in terms of the compositions of each stream.
As such, a substantial number of nonconvex terms

appear in the expressions of mass balance in the model.
Another alternative is to formulate the model in terms
of the flows of individual components, where the non-
convexities arise only in the models of dividers. The
resultant model is solved, e.g. with a conventional NLP
algorithm (Floudas, 1987), Benders decomposition
(Floudas & Aggarwal, 1990), or a reformulation-lin-
earization technique (Quesada & Grossmann, 1995).

A linear programming model has been successfully
formulated in the present work, which at the very least
yields a solution identical with those obtained by the
more complex nonlinear models mentioned above if
each model is based on a rigorous super-structure.
Naturally, the present model can be solved with relative
ease to yield the global optimal solution with certainty.

The linear programming model has been formulated
in the following manner.

Let F denote the set of feed-streams; P, the set of
product-streams; D, the set of dividers; M, the set of
mixers; S, the set of separators; and A, the set of
linkages among the operating units, i.e. the streams in
the super-structure. Variables x ’s, i.e. the splitting ra-
tios, are assigned only to the streams emerging from
dividers of the super-structure. Each x signifies the
fraction of the feed-stream to the network that is
diverted to a stream exiting from a divider. The given
mass of any component remaining in a stream between
two successive dividers cannot be dispersed by sharp
separators; moreover, no mixer exits between these two
dividers in the super-structure constructed rigorously
according to algorithm SNS-LMSG. Thus, the x as-
signed to the divider in front can be associated with any
stream between the two dividers; in fact, the x corre-
sponds to the ratio between a component contained in
this stream and that in the feed-stream to the entire
network; see Fig. 2. To illustrate numerically, suppose
that the flow rates or amounts of the six components in

Fig. 3. Illustration of constraints 3 and 4.Fig. 2. Illustration of the splitting ratio.
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Fig. 4. Illustration of merging separators. (a) Network prior to merging seperators identical in type and with the same cost function. (b) Network
resulting from merging the seperators as indicated in (a).

the feed-stream in Fig. 2 are [12, 8, 10, 4, 8, 6], thereby
giving rise to the total flow rate of 48. If xD 1M 1

=1/4,
xD 1S 3=1/2, and xD 1S 5=1/4, the flow rates of the
streams around divider D1 are balanced as given below.
[12, 8, 10, 4, 8, 6]

=
1
4

· [12, 8, 10, 4, 8, 6]+
1
2

· [12, 8, 10, 4, 8, 6]

+
1
4

· [12, 8, 10, 4, 8, 6]

Similarly, the flow rates of the streams around separa-
tor S3 are balanced as shown below:
1
2

· [12, 8, 10, 4, 8, 6]

=
1
2

· [12, 8, 10, 0, 0, 0]+
1
2

· [0, 0, 0, 4, 8, 6]

Now, suppose that the top-outlet stream of separator
S3 is split into 2 by divider D2, 1/3 is being bypassed to
mixer M3 and the remaining 2/3 being directly fed to
separator S2. Then, we have:

xD 2M 3
=

1
2

·
1
3
=

1
6

and

Table 1
Data for Example 1

A B CComponent

10Feed-stream 10 10
6 4Product-stream 1 2

864Product-stream 2
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Fig. 5. Rigorous super-structure of Example 1.

xD 2S 2=
1
2

·
2
3
=

2
6

.

Consequently, the flow rates of the streams around
divider D2 are balanced as

1
2

· [12, 8, 10, 0, 0, 0]

=
1
6

· [12, 8, 10, 0, 0, 0]+
2
6

· [12, 8, 10, 0, 0, 0]

and those around S2 are balanced as

2
6

· [12, 8, 10, 0, 0, 0]

=
2
6

· [12, 8, 0, 0, 0, 0]+
2
6

· [0, 0, 10, 0, 0, 0].

The resultant linear programming model is given in the
following.

min %
i�S

�
di %

{ j:( j,i )�A}

�
xji %

n

c=1

%
k�F

dki
c fk

c�� (1)

subject to

05xij Ö(i, j )�A where i�D (2)

%
{ j:(i, j )�A}

xij=1

Öi�D where ×l�F such that (l, i)�A (3)

%
{ j:(i, j )�A}

xij=xkl

Ö(k, l)�A where ×i�D such that (l, i )�A (4)

pi
c= %

{(l, j ):( j,i )�A}

�
xlj %

k�F

dki
c fk

c�
Öi�P and c=1, 2…, n (5)

dki
c =

>
1 there is a path from node k to node i

with component c
(6)0 otherwise

Fig. 6. Optimal structure for example 1 (cost=12.00).
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Table 2
Data for Example 2

BComponent A C D

4Feed-stream 1 06 0
Feed-stream 2 68 10 6

0 50Feed-stream 3 5
1.5Degree of difficulty 44

Component informationProduct Sum of components

A]9Product-stream 1 B5315 C53 D=0
B]7 C]7 B=C20Product-stream 2
D]9 A=0Product-stream 3 15

Fig. 7. Super-structure published in Quesada and Grossmann (1995) for Example 2.

In the objective function, expression (1), di denotes
the degree of difficulty of the separation in separator i.
Note that the components in the inlet stream of each
separator are determined when the super-structure is
generated by algorithm SNS-LMSG; hence, the differ-
ent degrees of difficulty of the separation can be as-
signed to separators identical in type but containing
different non-key components. For instance, the degree
of difficulty for performing separation A/B is, in reality,
greater than that for performing separation A/BCD
because the relative volatility of A in the latter is
greater than that in the former due to the non-key
heavy components in the mixture. In the objective
function, xji denotes the variable belonging to the inlet
stream to separator i, i.e. the variable belonging to the

stream between divider j and separator i ; and f
k

c, the
amount of component c in feed-stream k. Note that the
component composition of every stream is described by
the variables, i.e. splitting ratios, x ’s. Constraints (2)–
(4) pertain to the splitting ratios of the model. In
constraint (2), a natural assumption for the streams is
given; xij denotes the variable belonging to the outlet
streams of the dividers. Constraint (3) a mass balance
equation on the splitting ratios of the dividers that are
assigned to feed-streams is given; i.e. xij ’s are the vari-
ables of the outlet streams from divider i belonging to
feed-stream l ; it is illustrated in Fig. 3(a). In constraint
(4), a mass-balance equation on the splitting ratios of
the dividers that are assigned to separators is given; i.e.
xij ’s are the variables of the outlet streams from divider
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Fig. 8. Solution published in Quesada and Grossmann (1995) for Example 2 (cost=138.18).

i belonging to separator l, and xkl, the variable of the
inlet stream to separator l ; it is illustrated in Fig. 3(b).
Constraint (5) results from the mass balance of the
product-streams, where pi

c denotes the amount of com-
ponent c of product-stream i ; fk

c, component c in feed-
stream k ; and xlj, variables belonging to input streams
of mixer j assigned to product-stream i. Constraint (6)
refers to the connections between the operating units
appearing in the super-structure, where dki

c =1 indicates
that each stream, i.e. each arc of the path, contains
component c.

The mathematical programming model given in ex-
pressions (1)–(6) has the following properties. When a
feed-stream is split, the sum of variables x ’s, i.e. the
splitting ratio, must be equal to one. When an interme-
diate stream between a pair of the feed-stream and a
product-stream is split, the sum of the splitting ratios
must be equal to the splitting ratio of the inlet stream
to the separator to which the divider is assigned. This
mathematical programming model is also capable of
handling SNS problems where the component composi-
tions of the product-streams are not explicitly given,
but given as a set of inequality constraints. This re-
quires a slight modification of the constraints imposed
on the splitting ratios and to the product-streams;
specifically, the equality constraints are relaxed to in-
equality constraints. The present mathematical pro-
gramming model is strictly linear; it can be
algorithmically generated from the rigorous super-
structure. Thus, the model always yields the optimal
solution.

Any of the optimal separation-networks obtained in
the SNS problems under consideration may include two
or more separators identical in type and with the same
cost function. Obviously, some of such separators can
be merged, thereby reducing their number; this practice

Fig. 9. Optimal structure for Example 2 (cost=104.26).

Fig. 10. Optimal structure for Example 2 with combined seperators
(cost=104.26).
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Table 3
Data for Example 3

B CAComponent D

Feed-stream 2015 10 15
105 4Product-stream 1 10

10Product-stream 2 10 6 5
2.5 3.0Degree of difficulty 1.5

streams, respectively. Moreover, this tends to alter the
numbers of mixers and dividers and their linkages in
the network. For example, consider separators S1

2 and
S2

2 in Fig. 4(a); components A, B, C, and D are in both
separators’ inlet streams; moreover, they are of the type
2, separating between components A and B, and there-
fore, their degrees of difficulty of the separation are
identical. Their bottom-outlet streams are linked to the
dividers; the streams exiting from these dividers are
subsequently linked to the mixers assigned to product
streams P2 and P3. In addition, all the top-outlet
streams from both separators are linked to the dividers
whose exiting streams are, in turn, linked to the same
mixers, i.e. the mixers assigned to separator S1

1 and
product stream P1 with the specific splitting ratio.
These separators, i.e. separators S1

2 and S2
2, can only be

combined if the corresponding splitting ratios are iden-
tical, i.e. if x1/y1=x3/y3 and x2/y2=x4/y4. Under any
other circumstance, these separators must not be
merged if the optimality of the solution is to be main-
tained. The optimal network resulting from the merging
is illustrated in Fig. 4(b), where separator SC

2 represents
the combined separator. Note that the flow rate of the
inlet stream to this separator is equal to the sum of the
flow rates of the inlet streams to the two separators
merged and that Mc represents a new mixer for the inlet

should be implemented whenever it does not increase
the network’s cost. The resultant network is naturally
also optimal while the number of its separators and
consequently, its complexity are reduced. Specifically,
two separators identical in type should be merged and
replaced with a single separator if (i) they have the
same cost function, i.e. their degrees of difficulty of the
separation are identical; (ii) the dividers for the top-out-
let streams of the separators are linked to the same
mixers with identical splitting ratios; and (iii) the di-
viders for the bottom-outlet streams of the separators
are linked to the same mixers with identical splitting
ratios.

Naturally, the flow rates of the resultant separator’s
inlet and outlet streams are equal to the sum of the flow
rates of the two merged separators’ inlet and outlet

Fig. 11. Optimal structure for Example 3 (cost=54.25).

Table 4
Data for Example 4

C D E FComponent A B

262125 261923Feed-stream
8 4Product-stream 1 3 102 6

8 10 8Product-stream 2 8 6 5
5 4Product-stream 3 113104

752Product-stream 4 137
Degree of difficulty 1.5 3.0 2.0 4.02.5
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Fig. 12. Optimal structure for Example 4 (cost=330.76).

stream, and D1c and D2c are new dividers for the outlet
streams of the new separator.

A software package has been developed to illustrate
the present method; it is available at http://
www.dcs.vein.hu/capo/demo. The software includes the
generation of the rigorous super-structure, the mathe-
matical programming model, and the solution of the
model.

4. Examples

Four examples taken from the literature (Quesada &
Grossmann, 1995) are elaborated in detail to explicitly
and clearly illustrate the present method. The results of
two of the examples are superior to the previously
known best solutions, and those of the remaining exam-
ples are slightly better or equivalent in terms of the
objective function.

4.1. Example 1

Suppose that a three-component equimolar feed-
stream is to be separated into two multicomponent

Fig. 13. Examples of a sample and a non-simple path. (a) Simple
path: from Feed-stream to S. (b) Non-simple path: from feed-stream
to Sb.
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Fig. 14. Transformation (Tr1).

Table 6
Pertinent information for the step-by-step illustration

Components

BFeed-stream 1 A C
BFeed-stream 2 A C
B –AProduct-stream 1
BProduct-stream 2 – C

CProduct-stream 3 – –

Fig. 16. Creating and linking a divider to each feed-stream and a
mixer to each product-stream.

loads of the separators; this is equivalent to assuming
that the degree of difficulty of every separation is 1 in
Eq. (1). The pertinent data are summarised in Table 1.

The rigorous super-structure generated by algorithm
SNS-LMSG is given in Fig. 5. The three-component
feed-stream with components A, B, and C is split into
four streams; two of them are fed into separators
performing separation of two different types, and the
remaining two streams are bypassed to the product-
streams. Note that a variable is assigned to each of
these streams since they emerge from a divider. Specifi-
cally, variables xD 1M 1

and xD 1M 2
are assigned to the

streams that are bypassed to product-streams 1 and 2,
whereas variables xD 1S 1

1 and xD 1S 1
2 are assigned to the

inlet streams to separators S1
1 and S1

2, respectively. The
top stream from separator S1

1, containing component A
only, is then split into two streams that are merged with
the product-streams; these two streams are assigned

product-streams of different compositions as specified
in Quesada and Grossmann (1995) where the objective
function to be minimized is the sum of the total mass

Fig. 15. Transformation (Tr2).
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with variables xD 2M 1
and xD 2M 2

. The bottom stream
from separator S1

1, containing components B and C, is
split into three; two of them are merged with the
product-streams and the remaining one is sent to sepa-
rator S2

2. Appropriate variables are assigned to these
streams as indicated in Fig. 5. The top stream from
separator S1

2, containing components A, and B, is split
into three streams; two of them are merged with the
product-streams and the remaining one is fed to separa-
tor S2

1. The bottom stream from the same separator,
containing component C only, is split into two streams
that are merged with the product-streams. A new vari-
able is assigned consecutively to each stream resulting
from splitting, as indicated.

According to expressions (1)–(6), the LP model for
this separation-network synthesis problem can be ex-
pressed as follows:

min (30 · xD 1S 1
1+30 · xD 1S 1

2+20 · xD 3S 2
2+20 · xD 4S 2

1)

from Eq. (1)

subject to:

05xij (i, j)�{D1M1,D1M2,D1S1
1,D1S1

2,D2M1,D2M2,

D3M1,D3S2
2,D3M2,D4M1,D4S2

1,D4M2,

D5M1,D5M2,D6M1,D6M2,D7M1,D7M2,

D8M1,D8M2,D9M1,D9M2} from Inequality (2)

xD 1M 1
+xD 1S 1

1+xD 1S 1
2+xD 1M 2

=1 from Eq. (3)

Fig. 18. Creating seperators S1
2 and S2

2 and linking both of them to
the outlet of divider D2.

Fig. 17. Creating seperators S1
1 and S2

1 and linking both of them to
the outlet of divider D1.

xD 2M 1
+xD 2M 2

=xD 1S 1
1

xD 3M 1
+xD 3S 2

2+xD 3M 2
=xD 1S 1

1

xD 4M 1
+xD 4S 2

1+xD 4M 2
=xD 1S 1

2

xD 5M 1
+xD 5M 2

=xD 1S 1
2

xD 6M 1
+xD 6M 2

=xD 3S 2
2

xD 7M 1
+xD 7M 2

=xD 3S 2
2

xD 8M 1
+xD 8M 2

=xD 4S 2
1

xD 9M 1
+xD 9M 2

=xD 4S 2
1

Â
Ã
Ã
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Ã
Ã
Å

from Eq. (4)

6=10 · (xD 1M 1
+xD 2M 1

+xD 4M 1
+xD 8M 1

)

4=10 · (xD 1M 1
+xD 3M 1

+xD 4M 1
+xD 6M 1

+xD 9M 1
)

2=10 · (xD 1M 1
+xD 3M 1

+xD 5M 1
+xD 7M 1

)

4=10 · (xD 1M 2
+xD 2M 2

+xD 4M 2
+xD 8M 2

)

6=10 · (xD 1M 2
+xD 3M 2

+xD 4M 2
+xD 6M 2

+xD 9M 2
)

8=10 · (xD 1M 2
+xD 3M 2

+xD 5M 2
+xD 7M 2

)

Â
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Å
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from Eq. (5)

The resultant mathematical programming model
gives rise to a linear programming problem. Note that
the model proposed by Quesada and Grossmann (1995)
is nonlinear. The solution of the LP problem yields
12.00 as the minimal value of the objective function
with

xD 1M 1
=0.2 xD 1S 1

1=0.2 xD 1S 1
2=0.2 xD 1M 2

=0.4

xD 2M 1
=0.2 xD 3M 2

=0.2 xD 4M 1
=0.2 xD 5M 2

=0.2

Fig. 6 is the corresponding optimal structure obtained,
which is identical to that of Quesada and Grossmann
(1995).

4.2. Example 2

Example 3 of Quesada and Grossmann (1995) is
repeated here; three multicomponent product-streams

Fig. 20. Establishing a bypass from the outlet of divider D3 to the
inlet of mixer M1 for product-stream [A, B, 0].

Fig. 19. Creating seperators D3 and D4 and linking each of them to
each of the outlets of separator S1

1.

are obtained from three feed-streams. The objective
function to be minimized is the sum of the costs of the
individual separators in the network, where the cost of
a separator is its mass load multiplied by the degree of
difficulty of the separation. The pertinent data are given
in Table 2.

Quesada and Grossmann (1995) considered the
super-structure given in Fig. 7, and generated the opti-
mal structure based on this super-structure given in Fig.
8; the value of the objective function obtained from an
NLP model with 113 variables, with an execution time
0.74 s (given by the authors) on an IBM RS600/530, is
138.70.

The rigorous super-structure is generated with al-
gorithm SNS-LMSG. The mathematical programming
model derived from it is linear and contains 90 vari-
ables, of which 80 variables are assigned to the network
itself, i.e. to the dividers. Ten variables are assigned to
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the product-streams since the product-streams are spe-
cified by constraints instead of by their compositions in
the problem specification. For example, component A
must be greater than or equal to 9, while components B
and C must be less than or equal to 3, and component
D must be negligibly small in product-stream 1.

The optimal structure based on the proposed
method, given in Fig. 9, has been obtained with an
execution time of 0.55 s on a 100 MHz Pentium PC by
means of the LP solver BDMLP of GAMS 2.25
(Brooke, Kenderick & Meeraus, 1996); the value of the
corresponding objective function is 104.26.

Fig. 10 illustrates the optimal structure constructed
by combining separators performing an identical sepa-
ration according to the present method. Although this
structure differs from that in Fig. 9, their total costs are
identical because of the linearity of the cost functions.
Note that although they are not specified numerically
but defined to satisfy inequalities, the compositions of

the product-streams in the optimal solution are unex-
pectedly identical to those given in Quesada and Gross-
mann (1995).

4.3. Example 3

This example is Example 6 of Quesada and Gross-
mann (1995) in which one four-component feed-stream
is to be separated into two four-component product-
streams; the pertinent data are listed in Table 3. Again,
the proposed mathematical programming model is
derived from the rigorous super-structure constructed
by algorithm SNS-LMSG. The resultant optimal struc-
ture of four separators costing 54.25 depicted in Fig. 11
differs from that of Quesada and Grossmann (1995)
costing 55.50 and including three separators.

4.4. Example 4

Repeating Example 12 of Quesada and Grossmann
(1995) with our proposed method has yielded four
six-component product-streams from a six-component
feed-stream; the pertinent data are listed in Table 4.
The resultant optimal structure including 11 separators
is depicted in Fig. 12. The corresponding value of the
objective function is 330.76, which is 15% less than the
optimal value of 388.00 obtained by Quesada and
Grossmann (1995); their work has yielded a system
with five separators. Our execution time was 1.65 s on
a 100 MHz Pentium PC in contrast to their 33 s on an
IBM RS600/530.

Table 5 summarises the results obtained in the
present work. These results are also compared with
those of Quesada and Grossmann (1995). The solver
and the examples are available at http://
www.dcs.vein.hu/capo/demo.

5. Conclusions

Algorithmic methods have been extensively explored
because of the importance of attaining the optimality of
the solutions in separation-network synthesis (SNS). It
appears, however, that hitherto no method has been
available to algorithmically and rigorously solve every
step of an SNS problem and at the same time is capable
of ensuring the optimality of the solution. This is
attributable to the difficulty in systematically generating
appropriate mathematical programming models.

A novel algorithmic method is proposed in the
present work for SNS problems with linear cost func-
tions; the method is totally algorithmic throughout the
solution. With this method, the optimal solution is
obtainable with certainty for any instance of this class
of SNS problems. It is demonstrated that the genera-

Fig. 21. Creating seperator S2
3 and linking it to the outlet of divider

D4.
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Z. Ko6ács et al. / Computers and Chemical Engineering 24 (2000) 1881–19001896

Fig. 22. Establishing a bypass from the outlet of divider D4 to the inlet of mixer M2 for product-stream [0, B, C].

tion of the rigorous super-structure is the crucial step of
SNS. The fact that the mathematical programming
model inherent in the proposed method is linear insures
that the globally optimal solution can be generated; the
same fact renders it possible to apply the method in
conjunction with any available linear programming
code to problems much larger than those unsolved so
far. The efficacy of the present method is demonstrated
by solving four examples taken from the literature. It
should be cautioned, however, that a variety of practi-
cal considerations, such as the costs of mixers and
dividers, piping complexity, pumping energy, maintain-
ability, and controllability, may overshadow the desir-
ability of a separation-network.

The present algorithmic method has been proposed
for SNS problems with linear cost functions. Neverthe-
less, it should also be useful for determining initial or
approximate feasible solutions when the cost functions
involved are nonlinear.
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Appendix A. Proofs of Theorems

Proof of Theorem 1. The theorem will be proved by
induction on the maximum of the numbers of compo-
nents in the feed-streams. The simplest case involves
two components in each feed-stream; consequently, ev-
ery outlet stream of any separator contains a single
component. Obviously, no separation can be performed
on this outlet stream, thereby resulting in a loopless
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network. Now, the theorem is presumed to be valid for
any SNS problem for which at most k (\2) compo-
nents are in each of its feed-streams.

Suppose that the optimal network is given for an
arbitrary SNS problem for which the maximum of the
numbers of components in its feed-streams is (k+1). If
none of the operating units is situated between two
successive mixers or two successive dividers, then, these
mixers or dividers are combined; naturally, it does not
affect the optimality. The resultant optimal network is
designated as N ; and the SNS problem under consider-
ation, as P. If network N is loopless, then Theorem 1
holds.

Let a path of the network be termed simple if it
begins at one of the feed-streams and passes through
operating units other than separators before reaching
its end which is a separator; see the example in Fig.
13(a). On the other hand, a path is termed non-simple
if it starts at one of the feed-streams and leads to a
separator containing at least one separator between the

beginning and the end of the path; see the example in
Fig. 13(b). If a separator is linked to both a simple path
and a non-simple path, it is deemed to possess property
(p); such a separator is depicted in the top half of Fig.
14.

If network N contains a loop, the following is
executed.

First, suppose that there exists a separator with
property (p) in network N ; then, transformation (Tr1)
is executed on the network as illustrated in Fig. 14.
Note that if a separator does not have property (p),
transformation (Tr1) will not furnish it with property
(p); in fact, transformation (Tr1) reduces the number of
separators with property (p) by one. The cost of the
resultant network is identical to that of network N
because the individual separator’s cost is regarded as
linearly proportional to its mass load. Hence, the trans-
formed network is also optimal. Transformation (Tr1)
is repeated until no separator with property (p) remains
in the network. This procedure terminates in a finite

Fig. 23. Creating dividers D5 and D6 and linking each of them to each of the outlets of separator S3
2.
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Fig. 24. Establishing two bypasses from the outlet of divider D5, one to mixer M1 for product-stream [A, B, 0] and the other to mixer M2 for
product-stream [0, B, C].

number of steps because the number of separators with
property (p) is finite in network N ; the resultant net-
work is denoted as network N*, which is obviously an
optimal network of SNS problem P.

Second, if no separator with property (p) is in net-
work N, this network is renamed as N*. This is fol-
lowed by the construction of SNS problem P1. This
problem has the same product-streams as SNS problem
P, but its feed-streams are identical to the outlet
streams of the separators that are endpoints of simple
paths in N*. Let N*1 denote the subnetwork of N*
corresponding to problem P1, and N2* denote the re-
maining subnetwork of N*. Note that the maximum of
the numbers of components in the feed-streams of
problem P1 is at most k.

According to the hypothesis, an SNS problem with at
most k components in each of the feed-streams, e.g.
SNS problem P1, gives rise to a loopless optimal net-
work; this loopless optimal network is denoted by N1.

Then, subnetwork N1* of network N* is replaced with
N1 (i.e. connecting networks N2* and N1), therefore
resulting in another loopless network, the cost of which
cannot exceed that of network N1* since network N1 is
an optimal network of SNS problem P1. Thus, the
modified N* is also optimal, thereby verifying the
theorem.

Corollary. There exists a loopless optimal network where
mixers are assigned only to product-streams for any
separation-network synthesis problem with simple and
sharp separators, di6iders and mixers, pro6ided that the
cost of a network is the sum of the separators’ costs, each
of which is proportional to its mass load.

Proof. There exists a loopless optimal network to any
given SNS problem according to Theorem 1. Network
transformation (Tr2) illustrated in Fig. 15 is repeated as
long as a separator exists in the network on which this
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transformation can be performed. The number of these
transformations is finite since the network is loopless.
The cost is not increased during the transformation,
thus preserving the optimality. For simplicity, separa-
tors identical in inlet stream and type are combined
during the transformation.

Proof of Theorem 2. The algorithm SNS-LMSG gener-
ates the union of networks described in the corollary
for a given SNS problem, i.e. all potential operating
units and their linkages appear in the structure gener-
ated, thus the theorem is obvious.

The finiteness is a critical issue for any algorithm. In
this regard, the present algorithm terminates in a finite
number of steps. This can be elucidated as follows:

The numbers of feed-streams and product-streams
are finite; as a result, the first part of the algorithm is
finite. Single-component streams are fed into the mixers
from which the product-streams emerge; thereafter, no
further separation is performed. The outlet streams

from separators contain fewer components than their
inlet streams; hence, single-component streams can be
generated in a finite number of steps. Moreover, since
the number of product-streams is finite, the number of
streams between all the dividers accompanying the
feed-streams and all the mixers concomitant with the
product-streams is finite, thereby ascertaining the finite-
ness of the algorithm.

Appendix B. Step-by-step illustration of algorithm
SNS-LMSG

The example to illustrate algorithm SNS-LMSG is
specified in Table 6. Figs. 16–24 depict the early steps
of algorithm SNS-LMSG in solving the example; the
rigorous super-structure given in Fig. 25 is generated by
repeating these steps. Every step of the example should
be self-evident from the detailed caption provided to
each figure.

Fig. 25. Resultant rigorous super-structure.
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