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ABSTRACT 

A systematic and rigorous method for synthesizing azeotropic-distillation systems, which 
is of utmost practical importance, is yet to be fully established. The available methods are 
based mainly on heuristics and graphical procedures. Our experience indicates that even in 
synthesizing a simple separation network, the structure of the optimal solution may be 
counterintuitive. For synthesizing a complex network structure necessary for an azeotropic-
distillation system, therefore, the probability is very high that the solution generated would be 
far from the optimal one unless the method is systematic and rigorous. 

The proposed method is capable of algorithmically synthesizing optimal, near optimal, and 
other feasible structures for an azeotropic-distillation system from a set of candidate operating 
units. Initially, the residue curve map of the system is transformed to a unique 
multidimensional representation to facilitate the systematic partitioning of the feasible regions 
into lumped materials bounded by the thermodynamic boundaries and pinches. This renders it 
possible to derive analytical expressions of the resultant materials in terms of the coordinates 
of these boundaries and to automatically identify with dispatch the candidate operating units, 
such as separators, mixers, and decanters, for possible inclusion in the system. The process-
graph (P-graph) representation of these operating units serves as a basis for the synthesis 
procedure including combinatorial algorithms. The method is equally applicable to various 
other complex processes with phase transition and/or phase separation with any number of 
components. Crystallization, extraction, reactive distillation, and their combinations are 
examples of such processes. A case study in which ethanol is separated from its aqueous 
solution with toluene as the entrainer demonstrates amply the efficacy of the method. 

1. INTRODUCTION 

The current contribution is concerned with the synthesis of feasible alternative flowsheets 
of azeotropic-distillation systems. Specifically, it aims at developing an algorithmic and 
systematic method for synthesizing azeotropic-distillation systems from an extensive set of 
candidate operating units, i.e., functional units.  

Azeotropic distillation is ubiquitous in chemical and allied industries. The majority of 
existing azeotropic-distillation processes were developed and designed through extensive try-
and-error based on past experiences. Consequently, questions largely remain unanswered as to
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what potential benefit there might be for improving existing processes as well as what 
methodologies are to be adopted for devising new processes. 

In contrast to the rapid progress that has been made on the analysis of azeotropic-
distillation systems since the mid-1980’s (see, e.g., Van Dongen and Doherty, 1985; Siirola, 
1996; Widagdo and Seider, 1996), success achieved for the synthesis of azeotropic-distillation 
systems has been rather modest. The majority of the available approaches, often termed 
analysis-driven synthesis, are essentially based on the first principles and/or heuristic rules 
derived from the analysis of the residue curve map (RCM) of the system of interest (see, e.g., 
Siirola, 1996; Westerberg and Wahnschafft, 1996). 

In spite of the progress made to date, much remains to be resolved for establishing a 
systematic and comprehensive methodology for synthesizing azeotropic-distillation systems. 
In fact, some critical issues are yet to be resolved: For example, how can be feasible 
alternative flowsheets systematically and inclusively generated for the analysis-driven 
synthesis approach (see, e.g., Siirola, 1996). 

The difficulty of synthesizing an azotropic-distillation system is attributable to its 
physical/chemical intricacy, which inevitably leads to enormous combinatorial complexity in 
synthesis (Feng et al., 2000). In other words, it may result in an inordinately large number of 
plausible or candidate operating units, the possibility of which being included in a feasible 
structure must de determined in synthesis. The magnitude of the solution space renders it 
extremely difficult, if not impossible, to adopt a conventional MINLP method. Hence, the 
development of a combinatorially effective method is deemed highly desirable. Such a 
method is proposed here; it is based on the process graph (P-graph), an innovative 
mathematical system, which has been conceived for process synthesis by incorporating the 
specificities of process systems (see, e.g., Friedler et al., 1992; Friedler et al., 1993; Friedler 
et al., 1995). 

2. DEFINITION OF THE SYNTHESIS PROBLEM 

The thermodynamic pinches or boundaries, 
e.g., azeotropes, distillation boundaries, and the 
boundaries of liquid-liquid equilibrium 
envelopes, are of critical importance for 
azeotropic distillation.  Moreover, the 
composition of the feed- and product-streams 
must be specified to define the synthesis problem 
for an azeotropic-distillation system. Such 
information can be represented by RCM’s. For 
illustration, the RCM of the ethanol-water-
toluene system is depicted in Figure 1. The 
points F, E, W, and T, represent the feed, 
product, byproduct, and the entrainer, 
respectively.  

 
Fig. 1. RCM of the ethanol(E)-
water(W)-toluene(T) system. 
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The materials and operating units are the 
essential building blocks of a chemical 
process system. In what follows, the materials 
and operating units will be defined first. 
Naturally, the materials concomitant with 
plausible or candidate operating units, i.e., the 
input and output materials to each of them, are 
also simultaneously identified as required by 
the P-graph approach. 

A countless number of plausible materials 
or mixtures may be identified for a systems of  
three or more components. For exhaustive 
inclusion of every plausible alternative, 
therefore, a need exists to partition all the 
materials within each of the areas defined by 
various boundaries in the RCM. 
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Fig. 2. Lumped materials (L1, L2, …, L13).

Any RCM occupying an area or space comprises an infinite number of points; as a result, 
the number of plausible operations is also infinite. Feng et al. (2000) have proposed that the 
RCM be partitioned into a finite number of lumped materials covering the entire are as 
illustrated in what follows. 

In Figure 2, the whole RCM is partitioned into materials occupying the points, i.e., E, W, 
T, H, and F; those occupying the areas, i.e., L1 through L6; and those occupying the lines, i.e., 
L7 through L19. 

According to the topology of the RCM, the plausible operating units are the distillation 
columns producing ethanol (operating units 1 through 6 in Table 1); water (operating units 7 
through 10); toluene (operating units 11, 12, and 13); ternary azeotrop H (operating units 14 
through 23), decantors (operating units 24 through 30); and mixers. 

The set of products, raw materials, and operating 
units serve as the input to the process-network-
synthesis algorithms. 

3. AZEOTROPIC DISTILLATION DESCRIBED 
BY P-GRAPHS 

A set of operating units can be represented in a P-
graph, where the operating units are denoted by 
horizontal bars, and their input and output materials by 
solid circles. The P-graph is a directed graph; the 
direction of the arcs representing a process network is 
the direction of the material flows in the network; it is 
directed to an operating unit from its input materials 
and from an operating unit to its output materials. For 
example, distillation columns 6 and 9, decantor 29, and 
two mixers are represented by P-graph in Figure 3. A P-
graph is said to be a combinatorially feasible process 
structure or solution structure if it satisfies the five 
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ig. 3. P-graph representation of
a process structure.
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axioms (S1) through (S5) of the 
combinatorially feasible process structures (see, 
e.g., Friedler et al., 1992 and 1993). Axiom 
(S1) implies that each product is produced by at 
least one of the operating units of the system; 
axiom (S2), a material is not produced by any 
operating unit of the system if and only if this 
material is a raw material; axiom (S3), only the 
plausible operating units of the problem are 
taken into account in the synthesis; axiom (S4), 
any operating unit of the system has a series of 
connections eventually leading to the operating 
unit generating at least one of the products; and 
axiom (S5), each material appearing in the 
system is an input to or an output from at least 
one operating unit of the system.  

The union of all combinatorially feasible 
process structures is defined to be the maximal 
structure. The maximal structure of a synthesis 
problem comprises all the feasible structures 
capable of yielding the specified products from 
the specified raw materials. Naturally, the 
optimal network or structure is among the 
feasible structures generated from the 
maximum structure, which is the complete and 
yet simplest super-structure rigorously defined 
mathematically. The maximal structure is 
constructed via algorithm MSG (Friedler et al., 
1993). The complete set of the combinatorially 
feasible process structures or solution structures 
can be generated by algorithm SSG (Friedler et 
al., 1995). 

To facilitate algorithmic synthesis, the 
mathematical models are derived for the 
various operating units involved, i.e., 
distillation columns, mixers, and decantors, 
based on RCM’s and analytical geometry.  

The boundaries on RCM’s, i.e., the distillatio
liquid equilibrium envelopes, are often non-linear.
to the non-linearity of the constraints involved in t
need be solved for optimal synthesis. This non
difficulty in solution. To circumvent such dif
sectionally-linearized. Note that distillation bou
equilibrium envelope in Figure 2 are linearized o
Figure 4. The linearized models serve for the stru
Table 1  
Operating units for production of pure 
ethanol from its aqueous solution with 
toluene as the entrainer. 

 
# Type Input Outputs 
1 distillation L1 E, L7 
2 distillation L1 E, L8 
3 distillation L1 E, L10 
4 distillation L1 E, L11 
5 distillation L5 E, L10 
6 distillation L5 E, L11 
7 distillation L4 W, L10 
8 distillation L4 W, L9 
9 distillation L6 W, L7 

10 distillation F W, L7 
11 distillation L2 T, L8 
12 distillation L3 T, L9 
13 distillation L3 T, L11 
14 distillation L1 H, L18 
15 distillation L1 H, L19 
16 distillation L5 H, L18 
17 distillation L5 H, L19 
18 distillation L6 H, L14 
19 distillation L4 H, L14 
20 distillation L4 H, L15 
21 distillation L3 H, L16 
22 distillation L3 H, L17 
23 distillation L2 H, L17 
24 decanting L3 L12, L13 
25 decanting L4 L12, L13 
26 decanting L5 L12, L13 
27 decanting L9 L12, L13 
28 decanting L10 L12, L13 
29 decanting L11 L12, L13 
30 decanting H L12, L13 
n boundaries and the boundaries of liquid-
 The non-linearity of these boundaries leads 
he mathematical programming problem that 
-linearity usually gives rise to inordinate 
ficulty, the boundaries are linearized or 
ndaries and the boundary of liquid-liquid 
r sectionally linearized, thereby resulting in 
cture generation but not for the analysis of 



 355

individual structures which need to be 
evaluated on the basis of the rigorous models to 
ensure optimality. 

The linearized RCM and flow-rate-based 
representation conceived for separation-
network synthesis (Kovacs et al., 2000) render 
the mathematical models of mixers and 
separators linear. Moreover, the mathematical 
models of decantors can be made sufficiently 
linear. In the flow-rate-based representation, 
the materials are represented by the flow rates 
of their components, e.g., M = (M1, M2, M3), 
where M1, M2, and M3 are the flow rates of the 
first, second and third components, 
respectively. The total flow rate is the sum of 
the flow rates of the components. The mass-
balance constraints for the input and output materials of 
operating units can be written in the form of a simple sum of 
the vectors representing the materials, e.g., A = B + C or (A1, 
A2, A3) = (B1, B2, B3) + (C1, C2, C3). If any material M is inside 
a convex partitioned region, M can be written as a nonnegative 
linear combination of the vectors of the concentrations of the 
points, which are at the intersections of the boundaries of the 
region. For example, L6 = v1w + v2q + v3x, where v1, v2, and v3 
are the nonnegative variables (v1, v2, v3 ≥ 0); and w, q, and x are 
the constant vectors of the concentrations of  points W, Q, and 
X in Figure 3, respectively. The mathematical model for any operating unit involves the mass-
balance constraint and the constraints for its input and output materials. For example, the 
mathematical model of distillation column 9 consuming L6 and producing W and L7 is given 
in Table 2. 
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Fig. 4. Linearized RCM.  

Table 2 
Mathematical model of 
distillation column 9. 
 
L7 = v1q + v2x 
L6 = v3w + v4q + v5x 
W = v6w 
v1, v2, …, v6 ≥ 0 
W + L7 = L6 

The mathematical programming model of a process network includes the constraints for the 
operating units, e.g., the mathematical models of the operating units, and those for the 
materials, e.g., the mass-balance constraints or constraints for the products or raw materials. 
The mathematical models of the operating units defined in the preceding section, i.e., mixers, 
separators, and decantors are linear, and the flow-rate-based representations of the mass-
balance constraints are also linear. Thus, the mathematical-programming model gives rise to a 
MILP problem which can be solved effectively by the algorithms developed for the P-graph 
approach. 
 

4. SOLUTION OF THE SYNTHESIS PROBLEM OF PRODUCTION OF PURE 
ETHANOL FROM ITS AQUEOUS SOLUTION WITH TOLUENE AS THE 
ENTRAINER 

To demonstrate the efficacy of the proposed method, the systematic synthesis of the 
feasible flowsheets for the 3 component system of ethanol-water-toluene given in Figure 1 has 
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been solved at the level of linearization given 
in Figure 3. The resultant synthesis problem is 
defined on the basis of 24 partitioned regions 
denoted in Figure 2; it involves 23 separators, 7 
decantors, and 593 mixers, thereby yielding 
altogether 623 operating units. The resultant 
synthesis problem, however, is extremely 
complex because of this huge number of 
candidate operating units. Under the constraint 
that each process structure contains at most 7 
operating units, the implementation of the 
algorithm has resulted in 15 feasible flowsheets 
in 130 minutes on a PC (Pentium II. Celeron 
366 MHz). One of the feasible structures is 
represented on RCM in Figure 5 and by P-
graph in Figure 3. 

Fig. 5. Feasible structure. 

5. CONCLUSION 

A systematic method based on the first principles and minimal heuristics has been 
developed for the algorithmic synthesis of azeotropic-distillation systems. The method is 
capable of generating the complete set of feasible flowsheets for an azeotropic-distillation 
system, from which optimal and near-optimal flowsheets emerge once the cost of operating 
units are appropriately assigned. 
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