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Abstract

Due to the large variety of options offered to customers, batch production schemes are highly accepted in the paint industry implying that
scheduling plays an important role in optimal allocation of plant resources among multiple products. Since in a batch process, the cleaning of
equipment units is the major source of waste, waste minimization is also to be taken into account in determining the schedule.

The formerly developed S-graph framework [Sanmartı́ E, Holczinger T, Puigjaner L, Friedler F. Combinatorial framework for effective
scheduling of multipurpose batch plants. AIChE Journal 2002;48(11):2557e70.] proved to be highly effective in solving multipurpose batch
scheduling; it has now been specialized for solving paint production scheduling problems including waste minimization. The efficacy of the
new approach is illustrated with the solution of large-scale paint production scheduling problems.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The importance of the paint and coatings industry can sim-
ply be expressed by the number of painting and coatings
manufacturing facilities. For example, in the US their number
is over one thousand. The paint and coatings industry produces
a huge variety of products that protect, preserve, and also
beautify the objects to which they are applied. Typical prod-
ucts include architectural coatings (e.g. house paints), indus-
trial coatings (e.g. automotive finishes, wood furniture and
fixture finishes), and special purpose coatings (e.g. traffic
paints, roof coatings).

Paint production usually consists of three major operations:
grinding and dispersion, mixing and coloring, and finally, dis-
charging and packaging (see e.g. Orcun et al. [2]). Paints and
coatings are typically produced in batches. They are made in
stationary and portable equipment units such as high-speed
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dispersion mixers, rotary batch mixers, blenders, sand mills,
and tanks. Raw materials include solvents, resins, pigments,
and additives comprising inorganic and organic chemicals.
In general, paint manufacturing does not involve chemical
reactions between the raw materials; thus, the finished paint
consists of a mixture of the different raw materials. Since sev-
eral dozens of products are to be produced in a painting and
coating manufacturing site, the corresponding scheduling
problem is usually highly complex. Because of the importance
of paint production, it is essential to determine the optimal or
near optimal schedule for the operation.

The cleaning of the equipment units is the main source of
waste generation in paint production. Since cleaning is re-
quired when the product is changed, the number of changes
is also to be minimized. Furthermore, all engineering aspects
of cleaner production cannot be represented in the mathemat-
ical model of scheduling [3], it is advantageous to generate
several optimal and near optimal solutions for selection on
the basis of further examination.

Numerous approaches are known for scheduling. The math-
ematical programming methods, such as mixed integer linear
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A

Fig. 1. Typical paint production process.
programming (MILP) [4e7] and mixed integer non-linear pro-
gramming (MINLP) [8,9], are enumerative techniques that
can, in principle, generate the optimal solution. In practice,
however, they require an unaffordable amount of computation
time. Search methods, such as tabu search [10] and simulated
annealing [10,11] may generate a solution with appropriate
effort, however, the quality of the solution is unknown.

Orcun et al. [12] developed an MILP model similar to the
state-task network [7] for planning and scheduling of a batch
paint production plant. They considered a general plant; the
products can run through different production stages and fol-
low different manufacturing routes.

Mendez and Cerda [13] introduced a novel continuous-time
MILP formulation for the optimal short term scheduling. They
considered different intermediate storage policies such as un-
limited intermediate storage (UIS) and no intermediate storage
(NIS).

2. Problem to be solved

The recipe of a batch process can be given for each product
by the network of tasks. In the paint production, a product is
produced by four successive tasks: grinding, mixing, storing
the intermediate materials, and packing. Grinding, mixing
and storing are batch type operations while packing is contin-
uous. Fig. 1 shows the conventional representation of the
production.

A task cannot be performed by a dedicated equipment unit,
because there are usually more tasks than equipment units. An
equipment unit is assigned to each task for a time interval
where the length of the interval must not be shorter than the
processing time of the related task. Changeover time is defined
for an equipment unit if cleaning is necessary. The whole
amount of the intermediate material is used by the successive
tasks. Traditionally, such assignment of equipment units to
tasks and schedule of tasks is generated that have minimal
makespan. This schedule provides the highest efficiency of
the production system with the possibility of unnecessarily
large waste generation. For determining the schedule of tasks
that requires minimal cleaning cost, the objective function of
the problem has to be modified. While in the original problem
the makespan, in the reformulated problem the cleaning cost
must be minimized. This reformulation has minor effect on
the solution procedure; therefore, an effective solver for the
original problem is useful for the reformulated problem also.

In practice, the speed of the packing lines is much lower than
the speed of the mixers and grinders; furthermore, the number
of storage tanks is usually not large enough to store the interme-
diate materials in a dedicated equipment unit. This information
should be taken into account during scheduling.

3. S-graph framework for scheduling

The S-graph framework developed by Sanmartı́ et al. [1]
includes a mathematical model and solver for scheduling.
The basic idea is to consider a problem formulation that man-
ifests the unique structure of the class of scheduling problems
and a solution procedure that exploits the specific structure of
the problem. This approach can result in an enormous acceler-
ation relative to general purpose solvers.

The S-graph framework consists of the representation of the
scheduling problem [14], the basic algorithm [1], and the
acceleration tools. This section summarizes the S-graph repre-
sentation and the basic algorithm.

Each task given in the recipe is represented by a node in the
S-graph. Moreover, an additional node is assigned to each
product (see Fig. 2). The set of those equipment units that
can perform task i is denoted by Si. The processing orders
of the tasks are given by the arcs of the graph. The processing
time of a task may depend on the selection of the equipment
unit. A weight is assigned to each arc; it is the minimum of
the processing times of the plausible equipment units. In this
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Fig. 2. Conventional and S-graph representation of the recipe of product A.



227R. Adonyi et al. / Journal of Cleaner Production 16 (2008) 225e232
representation, the value assigned to an arc expresses a lower
bound for the difference of the starting times (STi, STj) of the
two related tasks (see Fig. 3).

For generating multiple batches of the products, the appro-
priate part of the S-graph of the production of one batch of
product is repeated according to the number of batches to
get the recipe-graph of multiple batches as shown in Fig. 4.

The S-graph can represent the different storage policies
including non-intermediate storage (NIS), unlimited interme-
diate storage (UIS), zero waiting (ZW) and common interme-
diate storage (CIS) policies. In the following, NIS will only be
considered.

The S-graph representation ensures that the intermediate
materials of a schedule are always stored in the corresponding
equipment unit. If equipment unit E1 is assigned to task 2 and
consecutively to task 5 in the graph in Fig. 4, then, an arc is
established from all the consecutive tasks of task 2 to task 5
as shown in Fig. 5. The weight of the arc is equal to the length
of the changeover.

Because of the combinatorial characteristics of scheduling,
a branch-and-bound (B&B) procedure may be useful for gen-
erating the optimal schedule of a scheduling problem. The
recipe-graph with no equipment unit assignment serves as
the root of the enumeration tree of the B&B procedure. At
any partial problem, one equipment unit is selected and then
all child partial problems are generated through the possible
assignments of this equipment unit to unscheduled nodes.

The bounding procedure tests the feasibility of a partial
problem. If this test is positive, it determines the lower bound
for the makespan of all solutions that can be derived from this
partial problem simply by using the well-known longest path
algorithm (see Appendix I for details).

4. Adapting the S-graph framework to paint production

Acceleration tools of the S-graph framework have been de-
veloped for solving large-scale scheduling problems including
paint production problems.
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Fig. 3. The relation between the starting times of tasks connected by an arc.
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Fig. 4. Recipe-graph of the illustrative example: two batches of product A and

one batch of product B.
4.1. Elimination of redundancy in the search space

An industrial scheduling problem may contain a large num-
ber of batches of the same product. The basic algorithm of the
S-graph framework considers every batch as an individual prod-
uct that implies a significant redundancy in the search space. To
exclude the redundancy during the search, Holczinger et al. [15]
inserted additional arcs into the recipe-graph that resulted in
sufficient acceleration for solving large-scale problems.

4.2. Scheduling of the storage tanks

In the paint production problem, the materials can be stored
in the grinders, mixers and tanks. Since a packing line itself
has no storing capacity, it requires storing its feed in some
equipment units. This requirement can simply be expressed
by introducing an additional arc. For example, the arc from
node 9 to node 7 in the S-graph in Fig. 6 ensures that the
intermediate material can be stored in tank E7 during packing.
Note that in this specific example, arc from node 4 to node 7
becomes redundant and therefore, it can be eliminated.

4.3. LP model for bounding

The longest path algorithm may not give a sharp lower
bound, especially near to the root of the enumeration tree.
An appropriate, linear programming (LP) model can sharpen
the bound with the help of the longest path.

Suppose that Lj denotes the length of the longest path lead-
ing to node j in the S-graph of a partial problem. Let ci denote
the lower bound of the finishing time of equipment unit i. The
value of ci can be determined by formula (1).

ci ¼max
�

max
j˛Mi

�
Lj þ tij

�
; min

j˛Mi

�
Lj

��
þ
X

j˛Mi

tij ð1Þ
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Fig. 5. S-graph representation of task sequence 2e5 for equipment unit E1

with NIS policy: new arc from node 3 to node 5 with 0 weight (dotted line).
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Fig. 6. Arc from node 9 to node 7 ensures that tank E7 is available until task 4

(packing) is finished.
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where Mi denotes the set of scheduled nodes of those tasks that
are to be performed by equipment unit i, Mi denotes the set of
those unscheduled nodes that can be performed only by equip-
ment unit i, and tij is the operating time of task j if it is
performed by equipment unit i.

Let N denote the set of those nodes of the S-graph that are un-
scheduled and have optional equipment units to perform. For
equipment unit i and task j, non-negative continuous variable
xij (i¼ 1, 2, ., n, j˛N) denotes the duration of the assignment
of equipment unit i to task j. Therefore, the finishing time of
the activity of equipment unit i is ci þ

P
j˛N xij ði ¼

1; 2;.; nÞ, it is a lower bound to makespan X. Every task
from set N has to be performed by some equipment units, i.e.P

i˛Sj
xij=tij � 1, where j˛N.

The solution of the LP problem (2)e(5) gives a lower
bound, X, for the partial problem:

min X ð2Þ

s.t.

ciþ
X

j˛N

xij � X; i¼ 1;2;.;n ð3Þ

X

i˛Sj

xij

tij

� 1; j˛N ð4Þ

Table 1

Recipes of the Example

Task Product A Product B Product C

Eq. Time (h) Eq. Time (h) Eq. Time (h)

1 E1 8 E1 9 E1 7

E2 11 E2 7

2 E2 15 E3 5 E3 4

E3 5
xij � 0; i¼ 1;2;.;n; j˛N ð5Þ

where n is the number of equipment units, Sj is the set of
equipment units that can perform task j.

4.3.1. Example
Three equipment units, E1, E2, and E3, are available to

generate three products, A, B, and C. The recipes of the prod-
ucts are given in Table 1. The recipe-graph of the example is
given in Fig. 7 for one batch of each product.

An LP model is solved at the root of the enumeration tree
of the branch-and-bound algorithm for the initial bound. Since
M1 ¼ 1gf , M2 ¼ B, M3 ¼ 4; 6gf , c1 ¼ 8, c2 ¼ 0, and c3 ¼ 16,
the LP problem can be formulated as given by Eqs. (6)e(13).

min X ð6Þ

s.t.

8þ x13þ x15 � X ð7Þ

x22þ x23 þ x25 � X ð8Þ

16þ x32 � X ð9Þ
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Fig. 7. Recipe-graph of Example.
Table 2

Recipes for products A, B, C, D, E, and F

Task Product A Product B Product C Product D Product E Product F

Eq. Time (min) Eq. Time (min) Eq. Time (min) Eq. Time (min) Eq. Time (min) Eq. Time (min)

1 E1 60 E1 60 E2 60 E3 60 E4 40 E5 40

2 E6 310 E7 240 E8 120 E7 240 E6 300 E7 240

E8 120 E9 240 E8 120 E8 120

E9 240

3 E10 60 E11 120 E11 120 E10 60 E10 60 E10 60

E11 120 E13 60 E12 70 E11 120 E12 90 E15 120

E13 60 E15 120 E13 70 E13 60 E14 90 E16 90

E15 120 E17 60 E14 60 E14 90 E16 90 E17 60

E17 60 E19 120 E16 50 E15 120 E18 90 E18 90

E19 120 E20 60 E17 60 E20 60 E19 120

E20 60 E18 90 E20 60

E19 120

E20 60

4 E21 720 E22 540 E21 720 E22 540 E21 720 E21 720

E22 540 E23 720 E22 540 E23 720 E22 540

E23 720
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x15

7
þ x25

7
� 1 ð11Þ

x22

15
þ x32

5
� 1 ð12Þ

x13; x15; x22; x23; x25; x32 � 0 ð13Þ

The resultant lower bound is X¼ 17.4. It is a sharper bound
than that given by the longest path algorithm, i.e. 14.

As shown, the LP model can generate sharper lower bound
than the longest path algorithm. In practice, however, the
construction and solution of the LP model for every partial
problem may need too much computational effort. Further-
more, approaching the leaves of the enumeration tree, the
difference between the bound from the LP and the longest
path algorithm is usually reduced. Hence, it is valuable to

Table 3

Number of batches of the products

Product A B C D E F

Number of batches 3 5 1 3 9 3
use the LP model for those partial problems that are near
the root of the enumeration tree.

5. Application

Twenty-three equipment units, E1eE23, are available to
generate six products, A, B, C, D, E, and F. The recipes of
the products are given in Table 2. The changeover time is
70 min for equipment units E6, E7, E8, and E9, and
100 min for equipment units E1eE5 and E10eE20. All other
changeover times are supposed to be zero. The number of
batches to be produced is given in Table 3.

To get the minimal makespan solution, an MILP model
based on the work of Mendez and Cerda [13] has been solved
by GAMS/CPLEX 7.5 and required 34 s CPU time on an
AMD Athlon XP 2200 MHz. The same problem has been
solved by the proposed algorithm that required 0.9 s CPU
time on the same PC. The resultant makespan is 6700 min.
Figs. 8 and 9 show the schedule-graph and the Gantt-chart
of the optimal solution, respectively.

The cleaning of the equipment units is one of the most pol-
luting and costly operations. The minimal makespan schedule
of Figs. 8 and 9 contains 11 cleaning operations. The cleaning
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Fig. 8. Schedule-graph of the solution with minimal makespan (dotted arcs represent changeovers with cleaning costs).
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Table 4

Cleaning cost of grinders E1, E2, E3, E4, and E5

From To

Product A Product B Product C Product D Product E Product F

Product A 0 500 500 500 500 500

Product B 1000 0 500 500 500 500

Product C 1000 500 0 500 500 500

Product D 1000 500 500 0 500 500

Product E 2000 1000 1000 1000 0 500

Product F 2000 1000 1000 1000 500 0

Table 5

Cleaning cost of mixers E6, E7, E8, E9, and E10

From To

Product A Product B Product C Product D Product E Product F

Product A 0 1500 1500 1500 1500 1500

Product B 2500 0 1500 1500 1500 1500

Product C 2500 1500 0 1500 1500 1500

Product D 2500 1500 1500 0 1500 1500

Product E 5000 2500 2500 2500 0 1500

Product F 5000 2500 2500 2500 1500 0

Table 6

Cleaning cost of storage tanks E10eE20

From To

Product A Product B Product C Product D Product E Product F

Product A 0 1000 1000 1000 1000 1000

Product B 2000 0 1000 1000 1000 1000

Product C 2000 1000 0 1000 1000 1000

Product D 2000 1000 1000 0 1000 1000

Product E 4000 2000 2000 2000 0 1000

Product F 4000 2000 2000 2000 1000 0
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Fig. 9. Gantt-chart of the solution presented in Fig. 8.
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procedure main
notation: n: number of equipment units

Ni (i = 1,2,..., n): set of tasks that can be performed by equipment unit i
last_node: set of pairs (i, j), where i is an equipment unit and j is a task (node) 
PP = (G (N,A1,A2), bound, last_node, SOUN)

input: recipe-graph G (N,A1, ) and Ni (i = 1,2,...,n)
begin

SET = ; bound = 0; SOUN = N1 N2 ... Nn; last_node = ; current_best = ;
put (G (N,A1, ), bound, last_node, SOUN) into SET;
while SET do

begin 
  select and remove one element from SET, it is denoted by PP;

branching(PP);
  end;

if current_best < then print solution;
end

Fig. 10. The main procedure of the scheduling algorithm.
operations are denoted by the dotted changeover arcs on the S-
graph. Tables 4e6 include the cleaning costs of the equipment
units, where the cleaning costs depend on the difficulty of
cleaning, i.e. on the sequence of products of the equipment
units.

The cleaning cost of the solution with minimal makespan is
14,000 cost units (CU). However, the minimal cost schedule has
only 3500 CU containing only four cleaning operations while
its makespan is 6910 min. If the cleaning cost is limited to
5500 CU, the corresponding makespan is reduced to 6700 min.
6. Concluding remarks

The formerly developed S-graph framework of batch sched-
uling has been extended to solve complex paint production
problems. The proposed methodology is useful for generating
the solution of minimal makespan, the solution of minimal
cleaning cost, and the solution of minimal makespan with lim-
ited cleaning costs. The examination of an industrial paint
production problem illustrates the efficacy of the proposed
algorithm.
procedure branching(PP)
comment: generates all child partial problem of partial problem PP
notation: graph(PP) = G (N,A1,A2)

bound(PP)= bound
last_node(PP)=last_node
SOUN(PP)=SOUN

begin
let EQ be an equipment unit that can be assigned to an unscheduled task (node);
let SO = NEQ  SOUN(PP);
for all k SO do

begin
if there is no pair (i, j) last_node such that i = EQ then

begin
put (graph(PP), bound(PP), last_node(PP) {(EQ,k)}, SOUN(PP)\{k})

into SET;
end;

else
begin
let G0(N,A1,A2) = graph(PP);
for all (j, l) A1 do G0(N,A1,A2) = G0(N,A1,A2 {(l, k)});
bounding(G0(N,A1 A2), bound);
if bound < current_best then

begin
if SOUN(PP)\k = then

update current_best, SET, and solution;
else

put (G0(N,A1,A2), bound, last_node(PP) {(EQ,k)}\{(EQ,j)},
SOUN(PP)\{k}) into SET;

end;
end;

end;
return;

end;

Fig. 11. The branching procedure of the scheduling algorithm.
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Appendix I. Basic algorithms for the S-graph
framework [1]

The main procedure initializes the values of the variables
(see Fig. 10). The branching procedure (see Fig. 11) generates
the partial problems. At any partial problem, one equipment
unit is selected and then all child partial problems are gener-
ated through the possible assignments of this equipment unit
to unscheduled tasks.

The bounding procedure (see Fig. 12) tests the feasibility of
a partial problem first. If this test is proved positive, it deter-
mines a lower bound for the makespan of all solutions that
can be derived from this partial problem.
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